E E-TECH ACADEMY

PRESENTS

CHEMISTRY MODULE

NEETJEE FORUM

1st Floor, New, White House, SG Barve Marg, near Anjuman Islam School, Buddha Colony, Kurla West, Kurla, Mumbai, Maharashtra 400070 Ph: 9833905914, http://www.etechacademy.com/

	INDEX								
SL.NO	TOPIC NAME	Page. No:							
1.	ELECTROCHEMISTRY	1 – 17							
2.	CO-ORDINATION COMPOUNDS	18 - 38							
3.	d & f BLOCK ELEMENTS	39 – 51							

ELECTROCHEMISTRY

ELECTROCHEMISTRY

	LEVEL-1		1) 1.061 x 10 ⁻⁴ S cm ² mol ⁻¹
1.	Strong electrolytes are those which :		2) 1.061 S cm ² mol ⁻¹
	1) dissolve in water		3) 10.61 S cm ² mol ⁻¹
	2) does not conduct electricity		4) 106.1 Scm ² mol ⁻¹
	3) dissociate into ions even at high concentration	8.	Which statement is not correct:
	4) dissociate into ions at high dilution		1) Conductance of an electrolytic solution
2.	Solid sodium chloride does not conduct		increases with dilution
	electricity due to the absence of :		2) Conductance of an electrolytic solution
	1) free NaCl 2) free ions		decreases with dilution
	3) free molecules 4) free atoms of Na and Cl		3) Specific conductance of an electrolytic
3.	Electrolytic conduction is due to the movement		solution decreases with dilution
	of		4) Equivalent conductance of an electrolytic
	1) molecules 2) atoms		solution increases with dilution.
	3) ions 4) electrons	9.	The resistance of 0.01 N solution of an
4.	Which of the following solutions of KCl has		electrolyte was found to be 210 ohm at 298 K
	the lowest value of equivalent conductance?	-	using a conductivity cell of cell constant
	1) 1 M 2) 0.1 M		0.66 cm ⁻¹ . The equivalent conductance of
	3) 0.01 M 4) 0.001 M		solution is:
5.	If the specific resistance of a solution of	CA	1) 314.28 mho $cm^2 eq^{-1}$
	concentration C geq L ⁻¹ . Then its equivalent		2) 3.14 mho $cm^2 eq^{-1}$
	conductance is:		3) 314.28 mho ⁻¹ cm ² eq ⁻¹
	1) 100R/C 2) RC/1000		4) 3.14 mho ⁻¹ cm ² eq ⁻¹
	3) 1000/RC 4) C/1000R	10.	Electrolytic conduction differs from metallic
6.	The specific conductance's in ohm ⁻¹ cm ⁻¹ of four		conduction from the fact that in the former.
	electrolytes P, Q, R and S are given in brackets:		1) The resistance increases with increasing
	P (5.0 × 10 ⁻⁵) Q (7.0 × 10 ⁻⁸) R (1.0 × 10 ⁻¹⁰)		temperature
	S (9.2 \times 10 ⁻³) The one that offers highest		2) The resistance decreases with increasing
	resistance to the passage of electric current is		temperature
	1) P 2) S 3) R 4) Q		3) The resistance remains constant with
7.	The specific conductance of a salt of 0.01 M		increasing temperature
	concentration is 1.061 x 10 ⁻⁴ S cm ⁻¹ . Molar		4) The resistance is independent of the length of
	conductance of the same solution will be :		the conductor

1

ELECTROCHEMISTRY

- 11. The specific conductance of a 0.01 M solution of KCl is 0.0014 ohm⁻¹ cm⁻¹ at 25° C. Its equivalent conductance (cm2 ohm⁻¹ eq⁻¹) is :1) 140
 2) 14
 3) 1.4
 4) 0.14
- 12. Which one of the following is wrong:
 Specific conductance increases on dilution.
 Specific conductance decreases on dilution.
 Equivalent conductance increases on dilution.
 Molar conductance increases on dilution.
- 13. At infinite dilution, the equivalent conductance's of CH₃COONa, HCl and CH₃COOH are 91, 426 and 391 mho cm² eq⁻¹ respectively at 25°C. The eq. conductance of NaCl at infinite dilution will be:

1) 126 2) 209 3) 391 4) 908

14. For HCl solution at 25 °C, equivalent conductance at infinite dilution is 425 ohm⁻¹ cm² eq⁻¹. The specific conductance of a solution of HCl is 3.825 ohm-1 cm⁻¹. If the degree of dissociation is 90%, the normality of the solution is:

1) 0.90 N 2) 1.0 N 3) 10 N 4) 1.2 N

15. The molar conductivities Λ^{0}_{NaOAc} and Λ^{0}_{HC1} at infinite dilution in water at 25°C are 91.0 and 426.2Scm² mol⁻¹ respectively. To calculate Λ^{0}_{HOAc} the additional value required is :

1) Λ^0 NaCl 2) Λ^0 H₂O

3) Λ^0 KCl 4) Λ^0 NaOH

16. The molar conductance of AgNO₃, AgCl and NaCl at infinite dilution are 116.5, 121.6 and 110.3 Scm²mol⁻¹ respectively. the molar conductance of NaNO₃ is :

1) 111.4 S cm² mol⁻¹ 2) 105.2 S cm² mol⁻¹

3) 130.6Scm²mol⁻¹ 4) 150.2Scm²mol⁻¹

17. The conductivity of a saturated solution of $BaSO_4$ is 3.06×10^{-6} ohm⁻¹ cm and its molar conductance is 1.53 ohm⁻¹ cm² mol⁻¹. The K_{sp} of $BaSO_4$ will be

1) 4×10^{-12}	2) 2.5×10^{-9}
3) 2.5 × 10 ⁻¹³	4) 4 × 10 ⁻⁶

18. Kohlrausch's law states that at :-

1) Infinite dilution, each ion makes definite contribution to conductance of an electrolyte whatever be the nature of the other ion of the electrolyte.

2) Infinite dilution, each ion makes definite contribution to equivalent conductance of an electrolyte whatever be the nature of the other ion of the electrolyte.

3) Finite dilution, each ion makes definite contribution to equivalent conductance of an electrolyte whatever be the nature of the other ion of the electrolyte.

4) Infinite dilution, each ion makes definite contribution to equivalent conductance of an electrolyte depending on the nature of the other ion of electrolyte.

19. In the galvanic cell

 $Cu(s) | Cu^{2+}(1 M) | | Ag+ (1 M) | Ag(s)$

the electrons will travel in the external circuit:

1) from Ag to Cu 2) from Cu to Ag

- 3) electrons do not travel in the external circuit
- 4) in any direction

20. The direction of current in the Daniell cell when Zn and Cu electrodes are connected is :

- 1) from Cu to Zn in the cell
- 2) from Cu to Zn outside the cell
- 3) from Zn to Cu outside the cell
- 4) in any direction in the cell

- 21. The equation representing the process by which standard reduction potential of zinc can be defined is 1) Zn^{2+} (s) + 2e⁻ \rightarrow Zn (s) 2) Zn (g) \rightarrow Zn²⁺ (g) + 2e⁻ 3) $Zn^{2+}(g) + 2e^{-} \rightarrow Zn(s)$ 4) Zn^{2+} (aq.) + $2e^{-} \rightarrow Zn$ (s) 22. A standard hydrogen electrode has zero electrode potential because: 1) Hydrogen is easiest to oxidize. 2) This electrode potential is assumed to be zero. 3) Hydrogen atom has only one electron. 4) Hydrogen is the lightest element. 23. Which is not true for a standard hydrogen electrode? 1) The hydrogen ion concentration is 1 M. 2) Temperature is 25°C. 3) Pressure of hydrogen is 1 bar. 4) It contains a metallic conductor which does not adsorb hydrogen. 24. E° for the half cell Zn^{2+} | Zn is -0.76 V. E.M.F. of the cell $Zn | Zn^{2+}(1M) | | 2H^{+}(1M) | H_{2}(1 \text{ atm})$ is : 2) +0.76 V 1) -0.76 V 3) -0.38 V (4) + 0.38 V25. Cu(s) | Cu (1 M) | |Zn (1 M) | Zn(s) A cell represented above should have emf. 1) Positive 2) Negative 3) Zero 4) Cannot be predicted 26. Given electrode potentials : $Fe^{3+} + e \rightarrow Fe^{2+}$; E° = 0.771 V $I_2 + 2e \rightarrow 2I^-$; $E^\circ = 0.536 \text{ V}$ E°cell for the cell reaction $2Fe^{3+} + 2I^{-} \rightarrow 2Fe^{2+} + I_2$ is -
- 1) $(2 \times 0.771 0.536) = 1.006 \text{ V}$ 2) $(0.771 - 0.5 \times 0.536) = 0.503$ V 3) 0.771 - 0.536 = 0.235 V 4) 0.536 - 0.771 = -0.235 V 27. Which of the following is not an anodic reaction:-1) Ag \rightarrow Ag⁺ +e- 2) Cu \rightarrow Cu²⁺ + 2e⁻ 3) $Fe^{2+} \rightarrow Fe^{3+} + e^{-}$ 4) $4OH^{-} \rightarrow 2H_2O + O_2 + 4e^{-}$ 28. Which of the following statements is correct:-1) Oxidation occurs at anode in both galvanic and electrolytic cell. 2) Reduction occurs at anode in both galvanic and electrolytic cell 3) Reduction occurs at anode in electrolytic cell whereas oxidation occurs at cathode in galvanic cell 4) Oxidation occurs at anode in electrolytic cell whereas reduction occurs at anode in a galvanic cell 29. Other things being equal, the life of a Daniell cell may be increased by :-1) Keeping low temperature 2) Using large copper electrode 3) Decreasing concentration of copper ions 4) Using large zinc electrodes 30. Zn can not displace following ions from their aqueous solution:-1) Ag⁺ 2) Cu^{2+} 3) Fe^{2+} 4) Na⁺ 31. The standard reduction potentials at 25 °C for the following half reactions are given against each :-

 Zn^{2+} (aq) + 2e⁻ \rightarrow Zn(s), -0.762 V Cr^{3+} (aq) + $3e^{-} \rightarrow Cr(s)$, -0.740 V $2H^+ + 2e^- \rightarrow H_2$ (g), 0.00 V $Fe^{3+} + 2e^{-} \rightarrow Fe^{2+}, 0.77 V$

NEET	ELECTROCHEMISTRY
Which is the strongest reducing agent?	35. The standard reduction potential at 25 °C of
1) Zn 2) Cr 3) H_2 (g) 4) $Fe^{2+}(aq)$	Li ⁺ / Li, Ba ²⁺ / Ba, Na ⁺ / Na and Mg ²⁺ / Mg
32. Using the standard electrode potential values	are -3.05 V, -2.73 V, -2.71 V and -2.37 V
given below, decide which of the statements, I,	respectively. Which one of the following is the
II, III and IV are correct.	strongest oxidizing agent?
Choose the right answer from (1) , (2) , (3) and (4) .	1) Na ⁺ 2) Li ⁺ 3) Ba ²⁺ 4) Mg ²⁺
$Fe^{2+} + 2e^- \Longrightarrow Fe$; $E^\circ = -0.44 V$	36. A gas X at 1 atm is bubbled through a solution
$Cu^{2+} + 2e^{-} \rightleftharpoons Cu$; $E^{\circ} = +0.34 V$	containing a mixture of 1 M Y^{-} and 1 M Z^{-} at
$Ag_+ + e^- \rightleftharpoons Ag$; $E^\circ = +0.80 V$	25°C. If the reduction potential of $Z > Y > X$
I. Copper can displace iron from FeSO ₄ solution.	then:
II. Iron can displace copper from $CuSO_4$	1) Y will oxidize X and not Z
solution.	2) Y will oxidize Z and not X
III. Silver can displace copper from CuSO ₄	3) Y will oxidize both X and Z
solution.	4) Y will reduce both X and Z
IV. Iron can displace silver from AgNO3	37. The standard electrode potential of Zn, Ag and
solution.	Cu electrodes are -0.76 V, 0.80 V and 0.34 V
1) I and II 2) II and III	respectively, then:
3) II and IV 4) I and IV	1) Ag can oxidize Zn and Cu
33. The standard electrode potentials for the	2) Ag can reduce Zn^{2+} and Cu^{2+}
elements A, B and C are 0.68, -2.50 and 0.50 V	3) Zn can reduce Ag^+ and Cu^{2+}
respectively. The order of their reducing power	4) Cu can oxidize Zn and Ag
is:	38. Standard reduction potentials of four metal
1) $A > B > C$ 2) $A > C > B$	electrodes are
3) $C > B > A$ 4) $B > C > A$	A = - 0.250 V , B = - 0.140 V
34. The oxidation potential of Zn, Cu, Ag, H_2 and	C = -0.126 V, $D = -0.402 V$
Ni electrodes are 0.76 V, -0.34 V, -0.80 V, 0 V,	The metal that displaces A from aqueous
0.55 V respectively. Which of the following	solution of its compounds is :-
reaction will provide maximum voltage?	1) B 2) C 3) D 4)None of the above
1) $Zn + Cu^{2+} \rightarrow Cu + Zn^{2+}$	39. The following four colorless salt solutions are
2) $Zn + 2Ag^+ \rightarrow 2Ag + Zn^{2+}$	placed in separate test tubes and a strip of Cu is
3) $H_2 + Cu^{2+} \rightarrow 2H^+ + Cu$	placed in each solution. Which solution finally
4) $H_2 + Ni^{2+} \rightarrow 2H^+ + Ni$	turns blue:
	1) $Zn(NO_3)_2$ 2) $Mg(NO_3)_2$
	3) KNO ₃ AgNO ₃

NE	ET			ELECTROCHEMISTRY
40.	Which of the follo	wing displacement does not	46.	Consider the reaction
	occur:			$\operatorname{Cl}_2(g) + 2\operatorname{Br}^-(aq) \rightarrow 2\operatorname{Cl}^-(aq) + \operatorname{Br}_2(l)$
	1) $Zn + 2H^+ \rightarrow Zn^{2-1}$	$+ + H_2 \uparrow$		The emf of the cell when $[C1^{-}] = [Br^{-}] = 0.01 \text{ M}$
	2) Fe + 2Ag ⁺ \rightarrow Fe ²⁺	$+ Ag \downarrow$		and Cl2 gas at 0.25 atm pressure will be (E° for
	3) Cu + Fe ²⁺ \rightarrow Cu ²⁺	+ Fe↓		the above reaction is = 0.29 V)
	4) $Zn + Pb^{2+} \rightarrow Zn^{2+}$	+ Pb ↓		1) 0.54 V 2) 0.272 V
41.	On the basis of the	ne following E° values, the		3) 0.29 V 4) -0.29 V
	strongest oxidizing	agent is :-	47.	The standard emf for the cell reaction
	$[Fe(CN)_6]^4 \rightarrow [Fe(CO)_6]^4$	$(2N)_6]^{3-} + e^{-1}; E^\circ = -0.35 V$		$\operatorname{Zn} + \operatorname{Cu}^{2+} \rightarrow \operatorname{Zn}^{2+} + \operatorname{Cu} \text{ is } 1.10 \text{ V at } 25 ^{\circ}\text{C}.$
	$Fe^{2+} \rightarrow Fe^{3+} + e^{-1}$; E	° = - 0.77 V		The emf for the cell reaction when 0.1 M Cu ²⁺
	1) Fe^{3+}	2) [Fe(CN)6] ³⁻		and 0.1 M Zn^{2+} solution are used at 25 °C is :
	3) [Fe(CN)6] ⁴⁻	4) Fe ²⁺		1) 1.10 V 2) 0.110 V
42.	$E^{\circ}(Ni^{2+}/Ni) = -0.22$	5 V E° (Au ³⁺ / Au) = 1.50 V		3) -1.10 V 4) -0.110 V
	The emf of the volt	aic cell	48.	E° for F^{2+} $2e^{-} \rightarrow 2F^{-}$ is 2.8 V,
	Ni Ni ²⁺ (1.0 M)	Au ³ + (1.0 M) Au is :		E° for $\frac{1}{2} F_2 + e^- \rightarrow F^-$ is?
	1) 1.2 V 2) -1.75 V	3) 1.75 V 4) 4.0 V	-0	1) 2.8 V 2) 1.4 V 3) -2.8 V 4) -1.4 V
43.	The emf of the cell		49.	How much will the potential of Mg $ $ Mg ²⁺
	T1 (s) T1 ⁺ (0.0001 I	M) Cu ²⁺ (0.01M) Cu(s) is		change if the solution of Mg ²⁺ is diluted 10
	0.83 V			times
	The emf of this cell	will be increased by :-		1) increases by 0.03 V 2) decreases by 0.03 V
	1) Increasing the co	ncentration of Cu ⁺² ions	A DA	3) increases by 0.059 V 4) decreases by 0.059 V
	2) Decreasing the c	oncentration of T1+	50.	How much will the potential of a hydrogen
	3) Increasing the co	ncentration of both		electrode change when its solution initially at
	4) 1 & 2 both			pH = 0 is neutralised to $pH = 7$?
44.	Which of the follow	wing represents the electrode		1) increases by 0.059 V
	potential of silver	electrode dipped into 0.1 M		2) decreases by 0.059 V
	AgNO ₃ solution at			3) increases by 0.41 V 4) decreases by 0.41 V
	1) E°red	2) (E°red + 0.059)	51.	Which of the following will increase the
	3) (E° ox - 0.059)			voltage of the cell with following cell reaction
45.	_	ntial of a hydrogen electrode		$Sn(s) + 2Ag^{+} (aq) \rightarrow Sn^{+2} (aq) + 2Ag(s)$
	dipped in solution	-		1) Increase in the size of silver rod
	1) 0.059 V	2) 0.00 V		2) Increase in the concentration of Sn ⁺² ions
	3) -0.059 V	4) 0.59 V		 3) Increase in the concentration of Ag⁺ ions 4) Decrease in the concentration of Ag⁺ ions
				4) Decrease in the concentration of Ag ⁺ ions

NEET	ELECTROCHEMISTRY
52. E° for the reaction $Fe + Zn^{2+} \rightarrow Zn + Fe^{2+}$ is -	59. The equilibrium constant (in approx) of the cell
0.35 V. The given cell reaction is :	reaction:
1) spontaneous 2) non-spontaneous	$Cu(s) + 2Ag^+ (aq.) \rightleftharpoons Cu^{+2}(aq.) + 2Ag(s)$
3) in equilibrium 4) can't say anything.	if E°cell = 0.465 V at 298 K is :-
53. For a reaction - $A(s) + 2B^+ / A^{2+} + 2B(s)$ KC	1) 2.0×10^{10} 2) 3.16×10^{12}
has been found to be 1012. The E°cell is:	3) 3.16×10^{15} 4) 4×10^{10}
1) 0.354 V 2) 0.708 V 3) 0.0098 V 4) 1.36 V	60. The emf of the cell in which the following
54. The standard electrode potential (E°) for 0OCl ⁻	reaction
/Cl ⁻ and Cl ⁻ $1/2$ Cl ₂ respectively are 0.94 V and	$Zn(s) + Ni^{2+} (C = 0.1) \rightleftharpoons Zn^{2+} (C = 1.0) + Ni(s)$
-1.36 V. The E° value of OCl ⁻ $1/2$ Cl ₂ will be :	occurs, is found to be 0.5105 V at 298 K. The
1) -2.20 V 2) -0.42 V	standard e.m.f. of the cell is :-
3) 0.52 V 4) 1.04 V	1) -0.5105 V 2) 0.5400 V
55. The hydrogen electrode is dipped in a solution	3) 0.4810 V 4) 0.5696 V
of pH = 3 at 25 °C. The electrode potential of	61. If $E_{Fe+2/Fe}^{0} = -0.441V$ and $E_{Fe+3/Fe}^{0} + 2 = 0.771V$
the half-cell would be:	the standard EMF of the reaction
1) 0.177 V 2) - 0.177 V	Fe + 2Fe ⁺³ \rightleftharpoons 3Fe ⁺² will be :
3) 0.087 V 4) 0.059 V	1) 0.330 V 2) 1.653 V
56. What is the potential of the cell containing two	3) 1.212 V 4) 0.111 V
hydrogen electrodes as represented below Pt;	62. When an electric current is passed through
$H_{2}(g) H^{+}(10^{-8})M H^{+}(0.001 M) H_{2}(g) IPt;$	acidified water, 112 mL of hydrogen gas at STP
1) - 0.295 V 2) - 0.0591 V	collects at the cathode in 965 s. The current
3) 0.295 V 4) 0.0591 V 61 COR	passed in ampere is :
57. Consider the cell $Cu Cu^{+2} $ Ag ⁺ Ag. If the	1) 1.0 2) 0.5 3) 0.1 4) 2.0
concentration of Cu^{+2} and Ag^+ ions becomes	63. Two electrolytic cells one containing acidified
ten times, then the emf of the cell will :-	ferrous chloride and another acidified ferric
1) Becomes 10 times	chloride are connected in series. The ratio of
2) Remains same	iron deposited at cathodes in the two cells
3) Increases by 0.0295 V	when electricity is passed through the cells will
4) Decreases by 0.0295 V	be :
58. The emf of the cell	1) 3 :1 2) 2 : 1 3) 1 : 1 4) 3 : 2
Ni $ Ni^{2+}(1.0 \text{ M}) Au^{+3}(0.1 \text{ M}) Au$	64. A current of 9.65 A flowing for 10 minute
$[E^{\circ} \text{ for } Ni^{+2} Ni = -0.25V, E^{\circ} \text{ for}$	deposits 3.0 g of a metal. The equivalent
$Au^{+3} Au = 1.50 V]$ is given as:-	weight of the metal is:
1) 1.25 V 2) - 1.75 V	1) 10 2) 30 3) 50 4) 96.5
3) 1.78 V 4) 1.73 V	KIIRI A MIIMBAT MAHARASHTRA -70 Ph· 9833905914

NEET	ELECTROCHEMISTRY
65. How many coulombs of electric charge a	re 72. One Faraday of electricity will liberate one
required for the oxidation of 1 mol of H_2O	to mole of the metal from the solution of
O ₂ ?	1) Auric chloride 2) Silver nitrate
1) 9.65×10^4 C 2) 4.825×10^5 C	3) Calcium chloride 4) Copper sulphate
3) 1.93×10^5 C 4) 1.93×10^4 C	73. When 96500 C of electricity are passed through
66. On passing 10800 C through electrolyt	ic barium chloride solution, the amount of barium
solution, 2.977 g of metal (atomic mass 106	.4 deposited will be :-
g/ mol) was deposited, the charge on the met	al 1) 0.5 mol 2) 1.0 mol
cation is –	3) 1.5 mol 4) 2.0 mol
1) +4 2) +3 3) +2 4) +1	74. A factory produces 40 kg of calcium in two
67. On passing electricity through dilute H_2S_2	D ₄ hours by electrolysis. How much aluminium
solution the amount of substance liberated	at can be produced by the same current in two
the cathode and anode are in the ratio:	hours :-
1) 1 : 8 2) 8 : 1 3) 16 : 1 4) 1 : 16	1) 22 kg 2) 18 kg
68. During electrolysis of fused calcium hydrid	e, 3) 9 kg 4) 27 kg
the hydrogen is produced at:	75. What would be the ratio of moles of Ag, Cu,
1) Cathode	Fe that would be deposited by passage of same
2) Anode	quantity of electricity through solutions of salts
3) Hydrogen gas is not liberated at all	containing Ag ⁺ , Cu ⁺² , Fe ⁺³ :
4) H_2 produced reacts with oxygen to form wate	\mathbf{r}' 1) 1 : 1 : 1 2) 1 : $\frac{1}{2}$: $\frac{1}{2}$
69. A silver cup is plated with silver by passing 90	55 2 3
A current for one second, the mass of A	a g 3) $\frac{1}{3}:\frac{1}{2}:1$ 4) 1:2:3
deposited is: (At. wt. of Ag = 107.87)	76. Electrolysis of aq. CuSO ₄ causes :-
1) 9.89 g. 2) 107.87 g.	1) An increase in pH
3) 1.0787 g. 4) 100.2 g.	2) A decrease in pH
70. When electricity is passed through a solution	of 3) Either decrease or increase in pH
AlCl ₃ , 13.5g Al is deposited. The number	of 4) None
Faradays must be :-	77. The passage of current liberates H_2 at cathode
1) 5.0 2) 1.0	and Cl_2 at anode. The solution is :-
3) 1.5 4) 3.0	1) $CuSO_4$ (aq) 2) $CuCl_2$ (aq.)
71. A solution of sodium sulphate in water	is 3 NaCl (aq.) 4) Water
electrolyzed using inert electrodes. The produ	ct 78. When lead accumulator is charged, it acts as:
at the cathode and anode are respectively:	1) an electrolytic cell 2) a galvanic cell
1) H_2 , SO_2 2) O_2 , H_2	3) a Daniel cell 4) none of the above
$\frac{3) O_2, Na}{4} H_2, O_2$	

NEET									ELECTROCHEMISTRY	
79. The thermodynamic efficiency of cell is given									LEVEL-2	
	by –								1. The chemical reaction,	
1) They are more efficient									$2AgCl(s) + H_2(g) \longrightarrow 2HCl(aq) + 2Ag(s)$	
2) They are free from pollution									taking place in a galvanic cell is represented by	
	3) They run till reactants are active								the notation :	
	4) Fu	el bur	ned v	vith C) ₂					1) Pt(s) H ₂ (g), 1 bar 1 M KCl (aq) AgCl (s)
80.	When	n a lea	ad sto	rage	batter	ry is c	harge	ed it a	ct as:	Ag(s)
	1) a fi	uel ce	11	2	2) a G	alvan	ic cell			2) Pt(s) H ₂ (g), 1 bar 1 M HCl (aq) 1 M Ag ⁺
	3) a e	lectro	lytic o	cell 4	4) a co	oncent	tratio	n cell		
81.	Whic	h of	the f	ollow	ving s	tatem	ient i	s fals	e for	(aq) Ag(s) 3) Pt (a) Ha(g) har 1M HCl(ag) AgCl(a)
	Fuel	cells?								3) Pt (s) H ₂ (g), 1 bar 1M HCl(aq) AgCl(s)
	1) Th	•								Ag (s)
	2) Th	•			-					4) Pt (s) H ₂ (g), 1 bar 1 M HCl (aq) Ag(s)
		•			nts ar	e activ	ve			AgCl(s)
	4) Fu	el bur								2. For the reduction of silver ions with copper
			LI	EVEL	1 KI	EY				metal, the standard cell potential was found to
1	2	3	4	5	6	7	8	9	10	be + 0.46 V at 25°C. The value of standard
3	2	3	1	3	3	3	2	1	2	Gibbs energy ΔG° will be (F = 96500 C mol ⁻¹)
11	12	13	14	15	16	17	18	19	20	1) $- 89.0 \text{ kJ}$ 2) $- 89.0 \text{ J}$
1	1	1	3	1	2	4	2	2	2	(3) - 44.5 kJ $(4) - 98.0 kJ$
21	22	23	24	25	26	27	28	29	30	3. Assertion : Galvanised iron does not rust.
4	2	4	2	2	3	1	1	4	4	Reason : Zinc has a more negative electrode
31	32	33	34	35	36	37	38	39	40	potential than iron.
1	3	4	2	4	1	3	3	4	3	1) If both assertion and reason are true and
41	42	43	44	45	46	47	48	49	50	reason is the correct explanation of assertion.
1	3	4	4	3	2	1	1	1	4	(2) If both assertion and reason are true but
51	52	53	54 2	55	56	57	58	59	60	reason is not the correct explanation of assertion.
3 61	2 62	1 63	3 64	2 65	3 66	3 67	4 68	3 69	2 70	3) If Assertion is true but reason is false.
3	02	4	04 3	3	1	1	2	3	3	4) If both assertion and reason are false.
71	72	⁴ 73		75	76	1 77	2 78	79	80	4. The products formed when an aqueous solution
4	2	1	2	2	2	3	1	3	3	of NaBr is electrolysed in a cell having inert
81		-	-				-		5	electrodes are :
2										1) Na and Br ₂ 2) Na and O ₂
_]									3) H_2 , Br_2 and $NaOH 4$) H_2 and O_2

NE	ET	ELECTROCHEMISTRY
5.	 Assertion : For the Daniel cell Zn Zn²⁺ Cu²⁺ Cu with E_{cell} = 1.1 V, the application of opposite potential greater than 1.1 V results into flow of electron from cathode to anode. Reason : Zn is deposited at anode and Cu is oxidised at cathode. 1) If both assertion and reason are true and reason is the correct explanation of assertion. 2) If both assertion and reason are true but reason is not the correct explanation of assertion. 3) If Assertion is true but reason is false. 	 If both assertion and reason are true and reason is the correct explanation of assertion. If both assertion and reason are true but reason is not the correct explanation of assertion. If Assertion is true but reason is false. If both assertion and reason are false. If both assertion potential at pH = 14 for the Cu²⁺/Cu couples is : (Given E⁰_{Cu²⁺/Cu} = 0.34 V ; K_{sp}[Cu(OH)₂] = 1 × 10⁻¹⁹) 0.34 V 2) - 0.34 V3) 0.22 V 4) - 0.22 V
	4) If both assertion and reason are false.	10. The minimum voltage required to electroyse
6.	A current of 96.5 A is passed for 18 min	alumina in the Hall-Heroult process is :
	between nickel electrodes in 500 mL solution of	(Given, ΔG_{f}^{0} (Al ₂ O ₃) = - 1520 kJmol ⁻¹ ; ΔG_{f}^{0}
7.	2M Ni(NO3)2. The molarity of solution afterelectrolysis would be :1) 0.46 M2) 2 M3) 0.625 M4) 1.25 MAssertion : According to Kohlrausch law themolar conductivity of a strong electrolyte atinfinite dilution is sum of molar conductivities ofits ions.Reason : The current carried by cation and anionis always equal.1) If both assertion and reason are true andreason is the correct explanation of assertion.	$(CO_2) = -394 \text{ kJmol}^{-1})$ 1) 1.575 V 2) 1.60 V 3) 1.312 V 4) - 2.62 V 11. The pH of 0.5 L of 1.0 M NaCl after the electrolysis for 965 s using 5.0 A current, is: 1) 1.0 2) 12.7 3) 13.0 4) 1.30
8.	 2) If both assertion and reason are true but reason is not the correct explanation of assertion. 3) If Assertion is true but reason is false. 4) If both assertion and reason are false. Assertion : The cell potential of mercury cell is 1.35 V, which remains constant. Reason : In mercury cell, the electrolyte is a paste of KOH and ZnO. 	 +ve. Reason : For E_{cell} = +ve, □ G is always -ve. 1) If both assertion and reason are true and reason is the correct explanation of assertion. 2) If both assertion and reason are true but reason is not the correct explanation of assertion. 3) If Assertion is true but reason is false. 4) If both assertion and reason are false.

Reason : On increasing dilution, the degree of 14. The cell constant of a given cell is 0.47 cm^{-1} . ionisation of weak electrolyte increases and The resistance of a solution placed in this cell is molality of ions also increases. measured to be 31.6 ohm. The conductivity of 1) If both assertion and reason are true and the solution (in S cm^{-1} where S has usual reason is the correct explanation of assertion. meaning) is : 2) If both assertion and reason are true but 3) 0.015 4) 150 1) 0.15 2) 1.5 reason is not the correct explanation of assertion. 15. The standard reduction potentials at 298 K for 3) If Assertion is true but reason is false. the following half reactions are given against 4) If both assertion and reason are false. each **19.** Assertion : During electrolysis of CuSO₄(aq) $Zn^{2^+}(aq) + 2e = Zn(s); -0.762 V$ using copper electrodes, copper is dissolved at $Cr^{3+}(aq) + 3e \longrightarrow Cr(s); -0.740 V$ anode and deposited at cathode. $2H^+$ (ag) + 2e \longrightarrow H₂ (g) ;0.00 V Reason : Oxidation takes place at anode and Fe^{3+} (ag) + e = Fe^{2+} (ag) :0.770 V reduction at cathode. 1) If both assertion and reason are true and Which is the strongest reducing agent? reason is the correct explanation of assertion. 1) Zn (s) 2) Cr (s) 3) H₂ (g) 4) Fe³⁺ (aq) 2) If both assertion and reason are true but 16. A 1.0 M with respect to each of the metal reason is not the correct explanation of assertion. halides AX₃, BX₂, CX₃ and DX₂ is 3) If Assertion is true but reason is false. electrolysed using platinum electrodes. If 4) If both assertion and reason are false. ${\rm E^{\circ}}_{{\rm A}^{3+}/{\rm A}}=1.50V, {\rm E^{\circ}}_{{\rm B}^{2^{*}}/{\rm B}}=0.3V, {\rm E^{\circ}}_{{\rm C}^{3^{+}}/{\rm C}}=-0.74~V,$ 20. Calculate the emf of the cell in which of the $E^{\circ}_{D^{2^+}/D} = -2.37$ V. following reaction takes place The correct sequence in which the various $Ni(s) + 2Ag^+ (0.002M) \rightarrow Ni^{2+} (0.160 M) +$ metals are deposited at the cathode is -2Ag(s) (Give the $E_{cell}^0 = 1.05$ V) 1) A,B,C,D 2) A.B.C 1) 0.73 V 2) 0.91 V 3) 0.62 V 4) 0.34 V 3) D,C,B,A 4) C,B,A 21. The equivalent conductance of an aqueous 17. When Br₂ is treated with aqueous solutions of solution of 1.0283 \times 10⁻³ g equivalent acetic NaF, NaCl and Nal separately acid per litre is 48.15 ohm⁻¹ cm² equiv⁻¹ at 1) F₂, Cl₂ and I₂ are liberated 25°C. At infinite dilution value is 390.7 ohm $^{-1}$ 2) only F_2 and CI_2 are liberated cm² equive⁻¹. Calculate the degree of 3) only I_2 is liberated ionisation and ionisation constant of acetic 4) only Cl₂ is liberated acid. 18. Assertion : On increasing dilution, the specific 1) 0.1232, 1.78 × 10⁻⁵ 2) 0.223, 102 × 10⁻⁵ conductance keep on increasing.

NEET

NEET 22. The number of coulombs required to reduce 27. Consider the following E^0 values : 12.3 g of nitrobenzene to aniline is $E^{0}_{Fa^{3+}/Fa^{2+}} = + 0.77 \text{ V} \text{ ; } E^{0}_{Sn^{2+}/Sn} = -0.14 \text{ V}$ 1) 96500 C 2) 5790 C Under standard conditions, the cell potential 3) 95700C 4) 57900 C for the reaction given below is : 23. Assertion (A) : E_{cell} increase with increase in $Sn(s) + 2Fe^{3+}(aq) \rightarrow 2Fe^{2+}(aq) + Sn^{2+}(aq)$ concentration of Ag⁺ ions 1) 1.68 V 2) 1.40 V *3) 0.91 V 4) 0.63 V **Reason (R)** : E_{cell} has positive value. 28. The limiting molar conductivities Λ° for NaCl, 1) If both assertion and reason are true and KBr and KCl are 126, 152 and 150 S cm² mol⁻¹ reason is the correct explanation of assertion. respectively. The value of Λ° for NaBr is : 2) If both assertion and reason are true but reason is not the correct explanation of assertion. *1) 128 S cm² mol⁻¹ 2) 176 S cm² mol⁻¹ 3) If Assertion is true but reason is false. 3) 278 S cm² mol⁻¹ 4) 302 S cm² mol⁻¹ 4) If both assertion and reason are false. 29. The molar conductivities Λ^0_{NaOAc} and Λ^0_{HCI} at 24. Cell equation : infinite dilution in water at 25°C are 91.0 and $A + 2B^+ \longrightarrow A^{2+} + 2B$ 426.2 Scm²/mol respectively. To calculate $A^{2+} + 2e \longrightarrow A$ Λ^0_{HOAC} , the additional value required is : $E^{\circ} = +0.34$ V and $\log_{10} K = 15.6$ at 300 K for 1) $\Lambda_{H_2O}^0$ 2) Λ_{KCl}^0 3) Λ_{NaOH}^0 *4) Λ_{NaCl}^0 cell reactions 30. The equivalent conductance of NaCl at Find E° for $B^+ + e \longrightarrow B$ concentration C and at infinite dilution are Λ_{C} **Given** $\left[\frac{2.303RT}{nF} = 0.059\right]_{a1200K}$ and Λ_{∞} , respectively. The correct relationship 1) 0.80 2) 1.26 3) -0.54 4) +0.94between $\Lambda_{\mathbf{C}}$ and Λ_{∞} is given as : (where the 25. 0.1 mole, per litre solution present in constant B is positive) conductivity cell where electrode of 100 cm² 1) $\Lambda_{C} = \Lambda_{\infty} + (B)C$ 2) $\Lambda_{C} = \Lambda_{\infty} - (B)C$ area placed at 1 cm and resistance observe is 5 x *3) $\Lambda_{C} = \Lambda_{\infty} - (B) \sqrt{C} 4$ $\Lambda_{C} = \Lambda_{\infty} + (B) \sqrt{C}$ 10³ Ohm, what is molar conductivity of 31. The metal that cannot be obtained by solution? electrolysis of an aqueous solution of its salts 1) 5 x10² S cm² mole⁻¹ 2) 10⁴ S cm² mole⁻¹ 3) 200 S cm² mole⁻¹ 4) 0.02 S cm² mole⁻¹ is: *2) Ca 1) Ag 26. In following cell reaction 32. Given below are the half-cell reactions : $Mg(s)+2Ag^{+}(0.001M) \longrightarrow Mg^{2+}(0.20M)+2Ag(S)$ $Mn^{2+} + 2e^{-} \rightarrow Mn$; $E^{\circ} = -1.18 V$ Calculate E_{cell} for the reaction [$E^{\circ} = 3.17 \text{ V}$, $2(Mn^{3+} + e^{-} \rightarrow Mn^{2+})$; E^o = +1.51 V $\frac{2.30 \text{ RT}}{5} = 0.054$]

The E° for $3Mn^{2+} \rightarrow Mn + 2Mn^{3+}$ will be: *1) -2.69 V; the reaction will not occur

3) Cu

4) Cr

1) 2.63 V 2) 3.01 V 3) 3.33 V 4) 3.51 V

- 2) –2.69 V ; the reaction will occur
- 3) -0.33 V ; the reaction will not occur
- 4) -0.33 V ; the reaction will occur

			LI	EVEL					
1	2	3	4	5	6	7	8	9	10
3	1	1	3	1	2	3	2	4	2
11	12	13	14	15	16	17	18	19	20
3	2	1	3	1	2	3	1,4	2	2
21	22	23	24	25	26	27	28	29	30
1	4	2	1	4	2	3	1	4	3
31	32								
2	1								

LEVEL-3(PREVIOUS YEARQUESTIONS)

1. If $E_{Fe^{+2}/Fe}^0 = -0.441 V$ and $E_{Fe^{+3}/Fe^{+2}}^0 = -0.771 V$ the standard EMF of the reaction

 Fe + 2Fe⁺³ \rightarrow 3Fe⁺² will be
 (AIPMT 2006)

 1) 0.330 V
 2) 1.653 V

- 3) 1.212 V 4) 0.111 V
- 2. A hypothetical electrochemical cell is shown
 A I A⁺ (xM) | | B⁺ (yM) | B (AIPMT 2006)
 1) A⁺ + B → A + B⁺
 - 2) $A^+ + e^- \rightarrow A$, $B^+ + e^- \rightarrow B$
 - 3) A + B+ \rightarrow A⁺ + B
 - 4) The cell reaction cannot be predicted.
- 3. The equilibrium constant of the reaction:

 $Cu(s) + 2Ag^+ (aq.) \rightarrow Cu = (aq.) + 2Ag(s)$

 $E^0 = 0.46$ V at 298 K is:(AIPMT 2008)1) 2.0×10^{10} 2) 4.0×10^{10}

3) 4.0×10^{15} 4) 2.4×10^{10}

4. On the basis of the following E0 values, the strongest oxidizing agent is- (AIPMT 2008) [Fe(CN)₆]⁴⁻→ [Fe(CN)₆]³⁻ + e⁻¹; E⁰ = -0.35 V Fe²⁺ → Fe³⁺ + e⁻¹; E⁰ = -0.77 V

1) Fe^{3+} 2) $[Fe(CN)_6]^{3-}$ 3) $[Fe(CN)_6]^{4-}$ 4) Fe^{2+}

5. Kohlrausch's law states that at :-

Infinite dilution, each ion makes definite contribution to conductance of an electrolyte whatever be the nature of the other ion of the electrolyte. (AIPMT 2008)

2) Infinite dilution, each ion makes definite contribution to equivalent conductance of an electrolyte whatever be the nature of the other ion of the electrolyte.

3) Finite dilution, each ion makes definite contribution to equivalent conductance of an

NE	ET	ELECTROCHEMISTRY
	electrolyte whatever be the nature of the other	10. Consider the following relations for emf of a
	ion of the electrolyte.	electrochemical cell :- (AIPMT 2010)
	4) Infinite dilution, each ion makes definite	(a) emf of cell =(Oxidation potential of anode) -
	contribution to equivalent conductance of an	(Reduction potential of cathode)
	electrolyte depending on the nature of the other	(b) emf of cell = (Oxidation potential of anode) +
	ion of electrolyte.	(Reduction potential of cathode)
6.	Given : (AIPMT 2009)	(c) emf of cell = (Reduction potential of anode) +
	(i) $Cu^{2+} + 2e^- \rightarrow Cu$, $E^0 = 0.337 V$	(Reduction potential of cathode)
	(ii) $Cu^{2+} + e^- \rightarrow Cu^+$, $E^0 = 0.153 \text{ V}$	(d) emf of cell = (Oxidation potential of anode) -
	Electrode potential, E^0 for the reaction,	(Oxidation potential of cathode)
	$Cu+$, $e^- \rightarrow Cu$, will be-	Which of the above relations are correct:
	1) 0.38 V 2) 0.52 V 3) 0.90 V 4) 0.30 V	1) (a) and (b) 2) (c) and (d)
7.	The equivalent conductance of $\frac{M}{32}$ solution of a	3) (b) and (d) 4) (c) and (a)
	52	11. Which of the following expressions correctly
	weak monobasic acid is 8.0 ohm cm ² eq ⁻¹ and at	represents the equivalent conductance at
	infinite dilution is 400 ohm cm ² eq ⁻¹ . The	infinite dilution of Al ₂ (SO ₄) ₃ . Given that $\Lambda^0_{Al^{3+}}$
	dissociation constant of this acid is:	
	1) 1.25×10^{-4} 2) 1.25×10^{-5} (AIPMT 2009)	and $\Lambda^0_{SO_4^{2-}}$ are the equivalent conductance at
	3) 1.25×10^{-6} 4) 6.25×10^{-4}	infinite dilution of the respective ions:-
8.	Al ₂ O ₃ is reduced by electrolysis at low potential	1) $\Lambda^{0}_{Al^{3+}} + \Lambda^{0}_{SO_{4}^{2-}}$ 2) $\left(\Lambda^{0}_{Al^{3+}} + \Lambda^{0}_{SO_{4}^{2-}}\right) \times 6$
	and high current. If 4.0×10^4 A of current is	
	passed through molten Al ₂ O ₃ for 6 hours, what	3) $\frac{1}{2}\Lambda^0_{Al^{3+}} + \frac{1}{2}\Lambda^0_{SO_4^{2-}}$ 4) $2\Lambda^0_{Al^{3+}} + 3\Lambda^0_{SO_4^{2-}}$ (AIPMT 2010)
	mass of aluminium is produced? (Assume 100%	12. For the reduction of silver ions with copper
	current efficiency, (At. mass of $Al = 27 \text{ g mol}^{-1}$)	metals, the standard cell potential was found to
	1) 1.3×10^4 g 2) 9.0×10^3 g(AIPMT 2009)	be + 0.46 V at 25° C. The value of standard
	3) 8.1×10^4 g 4) 2.4×10^5 g	Gibbs energy. ΔG^0 will be [F = 96500 C mol ⁻¹]
9.	An increase in equivalent conductance of a	1) -98.0 kJ 2) -89.0 kJ (AIPMT 2010)
	strong electrolyte with dilution is mainly due	3) -89.0 J 4) -44.5 kJ
	to:- (AIPMT 2010)	13. Standard electrode potential of three metals X,
	1) Increase in number of ions.	Y and Z are -1.2 V, +0.5 V and -3.0 V
	2) Increase in ionic mobility of ions.	respectively. The reducing power of these
	3)100% ionisation of electrolyte at normal	metals will be :- (AIPMT 2011)
	dilution.	1) Y > Z > X
	4) Increase in both i.e. number of ions and ionic	$\begin{array}{c} 1) 1 > Z > X \\ 2) Y > X > Z \end{array}$
	mobility of ions.	$\begin{array}{c} 2) 1 > X > Z \\ 3) Z > X > Y \\ \end{array} 4) X > Y > Z \end{array}$
13	E- TECH ACADEM	Y KURLA, MUMBAI, MAHARASHTRA -70 Ph: 9833905914

 _		_
Е		г
г	-	
		_

ELECTROCHEMISTRY
19. Limiting molar conductivity of NH4OH are
i.e $\lambda_m^0(NH_4OH)$ is equal to :- (AIPMT 2012)
1) λ_m^0 (NH ₄ OH) + λ_m^0 (NH ₄ Cl) - λ_m^0 (HCl)
2) λ_m^0 (NH ₄ Cl) + λ_m^0 (NaOH) - λ_m^0 (NaCl)
3) λ_m^0 (NH ₄ Cl) + λ_m^0 (NaCl) - λ_m^0 (NaOH)
4) λ_m^0 (NaOH) + λ_m^0 (NaCl) - λ_m^0 (NH ₄ Cl)
20. At 250C molar conductance of 0.1 mola
aqueous solution of ammonium hydroxide
9.54 ohm ⁻¹ cm ² mol ⁻¹ and at infinite dilution i
molar conductance is 238 ohm ⁻¹ cm ² mol ⁻¹ . Th
degree of ionization of ammonium hydroxide
the same concentration and temperature is:
1) 40.800 % (NEET 2013)
2) 2.080%
3) 4.008% 4) 4.008%
21. A hydrogen gas electrode is made by dippin
platinum wire in a solution of HCl of pH =
and by-passing hydrogen gas around t
platinum wire at 1 atm pressure. The oxidation
potential of electrode would be?
1) 1.18 V 2) 0.059 V (NEET 2013)
3) 0.59 V 4) 0.118 V 21. A button cell used in watches function
following
$Zn(s)+Ag_2O(s)+H_2O(l) \rightarrow 2Ag(s)+Zn^{2+}(aq)$
2OH ⁻ (aq)
If half-cell potentials are
$Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s); E^{\circ} = -0.76 V$
$Ag_2O(s) + H_2O(l) + 2e^- \rightarrow 2Ag(s) + 2OH^- (aq);$
$\Gamma = \Gamma 2 \Gamma V$
$E^{\circ} = 0.34 V$ The cell potential will be: (NEET 2013)

NE	ET		ELECTROCHEMISTRY
22.	When 0.1 mol MnO_4^{2-} is oxidised the quantity	28.	If the E_{Cell}^0 for a given reaction has a negative
	of electricity required to completely oxidise		value, which of the following gives the correct
	MnO_4^{2-} to MnO_4^{-} is :- (AIPMT 2014)		relationships for the values of ΔG° and K_{eq} ?
	1) 96500 C 2) 2 × 96500 C		1) $\Delta G^{\circ} < 0; K_{eq} > 1$ (NEET 2016)
	3) 9650 C 4) 96.50 C		2) $\Delta G^{\circ} < 0$; K _{eq} < 1
23.	The weight of silver (at wt. = 108) displaced by		3) $\Delta G^{\circ} > 0$; $K_{eq} < 1$ 4) $\Delta G^{\circ} > 0$; $K_{eq} > 1$
	a quantity of electricity which displaces 5600	29.	The number of electrons delivered at the
	mL of O_2 at STP will be :- (AIPMT 2014)		cathode during electrolysis by a current of 1 A
	1) 5.4 g 2) 10.8 g		in 60 s is (charge on electron = 1.60×10^{-19} C)
	3) 54.0 g 4) 108.0 g		1) 3.75×10^{20} 2) 7.48×10^{23} (NEET 2016)
24.	A device that converts energy of combustion of		3) 6×10^{23} 4) 6×10^{20}
	fuels like hydrogen and methane, directly into	30.	In the electrochemical cell:-
	electrical energy is known as:- (AIPMT 2015)		Zn ZnSO ₄ (0.01 M) CuSO ₄ (1.0 M) Cu,
	1) Electrolytic cell 2) Dynamo		the emf of this Daniel cell is Ei. When the
<u> </u>	3) Ni-Cd cell 4) Fuel Cell		concentration of ZnSO ₄ is changed to 1.0 M
25.	25. The pressure of H_2 required to make the potential of H_2 -electrode zero in pure water at 208 K is a constant of H_2 -electrode zero in pure water at 208 K is a constant.		and that of CuSO ₄ changed to 0.01 M, the emf
			changes to E2. Which one of the relationships is
	298 K is :- (NEET 2016)		correct between E ₁ and E ₂ ? (NEET 2017)
	1) 10^{-14} atm 2) 10^{-12} atm 2) 10^{-12} atm 2) 10^{-10} structure 4) 10^{-4} structure 4) 10^{-10} structure 4) structure 4) 10^{-10} structure 4) structure 4		(Given, $\frac{RT}{F} = 0.059$) F
26	3) 10^{-10} atm 4) 10^{-4} atm		$\frac{1}{F} = 0.05771$
20.	The molar conductivity of a 0.5 mol/dm^3	ACA	1) $E_1 < E_2$ 2) $E_1 > E_2$
	solution of $AgNO_3$ with electrolytic		3) $E_2 = 0 \# E_1$ 4) $E_1 = E_2$
	conductivity of 5.76 \times 10 ⁻³ S cm ⁻¹ at 298 K is:-	31.	Consider the change in oxidation state of
	(NEET 2016)		Bromine corresponding to different EMF
	1) 0.086 S cm ² /mol 2) 28.8 S cm ² /mol		values as shown in the diagram below:
	3) 2.88 S cm ² /mol		$BrO_{4}^{-} \xrightarrow{1.82 \text{ V}} BrO_{3}^{-} \xrightarrow{1.5 \text{ V}} HBrO$ $Br^{-} \xleftarrow[1.0652\text{ V}]{} Br_{2} \xleftarrow[1.595 \text{ V}]{}$
	,		
27	 4) 11.52 S cm²/mol 27. During the electrolysis of molten sodium chloride, the time required to produce 0.10 mol 		$\operatorname{Br} \leftarrow 1.0652 \operatorname{V} \operatorname{Br}_2 \leftarrow 1.595 \operatorname{V}$
21.			Then the species undergoing
	of chlorine gas using a current of 3 A is		disproportionation is: (NEET 2018)
	1) 220 minutes(NEET 2016)		1) BrO_{3}^{-} 2) BrO_{4}^{-}
	2) 330 minutes (INEET 2010)		3) Br ₂ 4) HBrO
	3) 55 minutes 4) 110 minutes		
	<i>c, c c</i> minutes		

NEET	ELECTROCHEMISTRY		
32. For a cell involving one electron $E_{Cell}^0 = 0.59V$ at	36. The number of Faradays (F) required to		
298 K, the equilibrium constant for the cell	produce 20 g of calcium from molten CaC		
reaction is :- (NEET 2019)	(Atomic mass of Ca = 4a g mol ⁻¹) is:		
[Given that $\frac{2.303 RT}{F} = 0.059 \text{ V}$ at T = 298K] 1) 1.0×10^2 2) 1.0×10^5 3) 1.0×10^{10} 4) 1.0×10^{30} 33. For the cell reaction	 1) 2 2) 3 3) 4 4) 1 37. On electrolysis of dil. sulphuric acid using Platinum (Pt) electrode, the product obtained at anode will be : (NEET 2020) 1) Hudrogen acc 2) Ouward acc 		
	1) Hydrogen gas 2) Oxygen gas		
$2Fe^{3+}(aq) + 2I^{-}(aq) \rightarrow 2Fe^{2+}(aq) + I_2(aq)$ $E^0_{Cell} = 0.24V \text{ at } 298 \text{ K.}$ The standard Gibbs energy (A tG ₀) of the cell	 3) H₂S gas 4) SO₂ gas 38. The number of Faradays(F) required to produce 20 g of calcium from molten CaCl₂ (Atomic 		
reaction is : (NEET 2019)	mass of Ca = 40 g mol^{-1}) is: (NEET 2020)		
[Given that Faraday constant F = 96500 C mol ⁻¹] 1) - 46.32 kJ mol ⁻¹ 2) - 23.16 kJ mol ⁻¹ 3) 46.32 kJ mol ⁻¹ 4) 23.16 kJ mol ⁻¹ 34. Following limiting molar conductivities are given as λ_m^0 (H ₂ SO ₄) = x Scm ² mol ⁻¹ λ_m^0 (K ₂ SO ₄) = y S cm ² mol ⁻¹ λ_m^0 (CH ₂ COOK) = z S cm ² mol ⁻¹ λ_m^0 (in S cm ² mol ⁻¹) for CH ₃ COOH will be- 1) x - y + 2 z 2) x + y - z (NEET 2019)	1) 1 2) 2 3) 3 4) 4 39. The molar conductivity of 0.007 M acetic acid is 20 S cm ² mol ⁻¹ . What is the dissociation constant of acetic acid? Choose the correct option. (NEET 2021) $\Lambda^0_{H^+} = 350 \text{ S cm}^2 \text{ mol}^{-1}$ 1) $1.75 \times 10^4 \text{ mol L}^{-1}$ 2) $2.50 \times 10^4 \text{ mol L}^{-1}$ 3) $1.75 \times 10^{-5} \text{ mol L}^{-1}$		
	 4) 2.50 × 10⁻⁵ mol L⁻¹ 40. At 298 K, the standard electrode potentials of 		
3) $x - y + z$ 3) $x - y + z$ 4) $\frac{x - y}{2} + z$ 35. The standard electrode potential (E°) values of Al ³⁺ Al, Ag ⁺ Ag, K ⁺ K and Cr ³⁺ Cr are -1.66 V, 0.80V, -2.93 V and -0.74 V respectively. The correct decreasing order of reducing power of the metal is : (NEET 2019) 1) Ag > Cr > A1 > K	Cu ²⁺ / Cu, Zn ²⁺ / Zn, Fe ²⁺ / Fe and Ag+ / Ag are 0.34 V, -0.76 V, -0.44 V and 0.80 V, respectively. On the basis of standard electrode potential, predict which of the following reaction cannot occur? (NEET 2022)		
2) K > Al > Cr > Ag	1) $CuSO_4(aq) + Zn(s) \rightarrow ZnSO_4(aq) + Cu(s)$ 2) $CuSO_4(aq) + Fe(s) \rightarrow FeSO_4(aq) + Cu(s)$		
3) K > A1 > Ag > Cr	2) $CuSO_4(aq) + Fe(s) \rightarrow FeSO_4(aq) + Cu(s)$ 3) $FeSO_4(aq) + Zn(s) \rightarrow ZnSO_4(aq) + Fe(s)$		
4) Al > K > Ag > Cr	$4) 2CuSO_4(aq) + 2Ag(s) \rightarrow 2Cu(s) + Ag_2SO_4(aq)$		
16 E- TECH ACADEM	Y KURLA, MUMBAI, MAHARASHTRA -70 Ph: 9833905914		

41. Given below are half-cell reactions: $MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$, $E_{Mn2+/MnO4-}^0 = -1.510V$ $\frac{1}{2}O_2 + 2H^+ + 2e^- \rightarrow H_2O$, $E_{O2/H2O}^0 = +1.223 V$ (NEET 2022) Will the permanganate ion, MnO_4^- liberate O_2 from water in the presence of an acid? 1) Yes, because $E_{cell}^0 = +0.287 V$ 2) No, because $E_{cell}^0 = -0.287 V$

- 3) Yes, because $E_{cell}^0 = + 2.733 V$
- 4) No, because $E_{cell}^{0} = -2.733 V$

42. Find the emf of the cell in which the following reaction takes place at 298 K

Ni(s) + $2Ag^+$ (0.001 M) \rightarrow Ni²⁺ (0.001 M) +

(NEET 2022)

$$\left(E_{Cell}^{0} = 10.5 \text{ V}, \frac{2.303 \text{RT}}{\text{F}} = 0.059 \text{ at } 298 \text{K}\right)$$

1) 1.0385 V 2) 1.385 V

- 3) 0.9615 V 4) 1.05 V
- 43. The conductivity of centimolar solution of KC1 at 25°C is 0.0210 ohm⁻¹ cm⁻¹ and the resistance of the cell containing the solution at 25°C is 60 ohm. The value of cell constant is –
 - 1) 3.28 cm⁻¹ 2) 1.26 cm⁻¹ (NEET 2023)

3) 3.34 cm⁻¹ 4) 1.34 cm⁻¹

44. Given below are two statements: one is labelled as (NEET 2023)

Assertion A: In equation $\Delta_r G = -nFE_{cell}$, value of Δr_G depends on n.

Reasons R: E_{cell} is an intensive property and $\Delta_r G$ is an extensive property.

In the light of the above statements, choose the correct answer from the options given below:

1) Both A and R are true and R is NOT the

correct explanation of A. 2) A is true but R is false

3) A is false but R is true

4) Both A and R are true and R is the correct explanation of A.

45. Homoleptic complex from the following

(NEET 2023)

- 1) Diamminechloridonitrito-N-platinum (II)
- 2) Pentaamminecarbonatocobalt (III) chloride
- 3) Triamminetriaquachromium (III) chloride
- 4) Potassium trioxalatoaluminate (III)

LEVEL-3 KEY									
1	2	3	4	5	6	7	8	9	10
3	2	2	1	1	2	4	1	4	2
11	12	13	14	15	16	17	18	19	20
4	4	2	3	3	2	4	3	3	3
21	22	23	24	25	26	27	28	29	30
3	3	1	2	2	3	2	3	4	1
31	32	33	34	35	36	37	38	39	40
2	3	1	2	4	4	2	1	3	4
41	42	43	44	45					
1	3	2	4	4					

- 1. Coordination number is maximum in
 - 1) $[Co(NH_3)_6]^{3+}$
 - 2) $[Co(C_2O_4)_3]^{3-1}$
 - 3) [CoCl₃(H₂O)₃]
 - 4) All have same coordination number
- 2. Which of the following compound can give 2 mole AgCl per mole of the compound with excess of AgNO₃?

 1) NiCl₂.6H₂O
 2) CuCl₂.4NH₃

 3)CO₃²⁻
 4) NH₃

- 3. Find the correct statement about the ligand given below
 - I. This is ethylenediamine tetraacetate ion
 - II. This is flexidentate ligand

III. This ligand forms optically active complex with Co^{3+}

IV. This ligand is used for estimation of hardness of water

1) I, II 2) II, III 3) I, II, III 4) I, II, III, IV

- 4. The number of secondary and primary valency of Pentaammine chloridcobalt (III) chloride is 1) 6, 2 2) 5, 2 3) 6, 3 4) 5, 3
- 5. What is the secondary valency of cobalt in the complex [Co(en)₂F₂]ClO₄?

1) 4 2) 5 3) 3 4) 6

6. In the complex [Pt(Py)₄] [PtCl₄], the oxidation number of Pt atom in former and later part of the compound are respectively

7. Coordination number of Cr is 6. A complex entity with $C_2O_4^{2-}$, end and superoxide as ligand is $[Cr(C_2O_4)_x(en)_y(O_2)_z]^+$. The ratio x : y : z is

1) 1 : 1 : 22) 1 : 1 : 13) 1 : 2 : 24) 2 : 1 : 1

8. In the complex, potassium pentacyanonitrosyl vanadate (0), the number of counter ions per molecule and the coordination number of central metal ion are respectively

1) 5, 5 2) 4, 6 3) 5, 6 4) 4, 4

In [Feη⁵ - C₅H₅)₂] the coordination number and oxidation state of iron are respectively

1) 10, +2 2) 6, +3 3) 4, 0 4) 4, +2

10. Select the correct statement

1) Flexidentate ligands can also be called ambidentate ligands

2) NO_2^{Θ} is a π -acid lignad

- 3) Ambidentate ligands are monodentate ligands
 4) [PtCl₄]⁻² is an outer orbital complex
- 11. What are the oxidation states of Ni in the complexes [Ni(dmg)₂] & Ni(CO)₄?
 1) +6, +4 2) +2, 0 3) +2, +4 4) +6, 0
- 12. Which is not an example of ambidentate ligands?

2) NO[⊕]

1) SCN $^{\Theta}$

NEET	Co – Ordination Compounds		
3) CN^{Θ} 4) $\ddot{N}H_2CH_2CH_2\ddot{N}H_2$	precipitate the free chloride ions in 200 ml of		
13. The two complexes PtCl ₄ . 2NH ₃ and PtCl ₄ 2KCl	0.01 M solution of the complex		
do not give precipitate of AgCl when treated	1) 80 ml 2) 40 ml		
with AgNO ₃ . They give zero and three moles of	3) 20 ml 4) 120 ml		
ions respectively in solutions for one mole of	20. The effective atomic number of Fe in Fe(CO) ₅		
complex. The structural formulae of both	is		
complexes are	1) 34 2) 26		
1) [PtCl ₂ (NH ₃)] Cl ₂ and K ₂ [PtCl ₆] respectively	3) 36 4) 54		
2) $[PtCl_4(NH_3)_2]$ and $K_2[PtCl_2(NH_3)_2]$ respectively	21. What are the oxidation states of Ni in the		
3) $[PtCl_4(NH_3)_2]$ and $K_2[Pt Cl_6]$ respectively	complexes [Ni(dmg) ₂] & Ni(CO) ₄ ?		
4) [PtCl ₄].2NH ₃)] and [PtCl ₄].2KCl respectively	1) +6, +4 2) +2, 0		
14. Which of the following can act as flexidentate	3) +2, +4 4) +6, 0		
ligand?	22. π acid ligands is		
1) dipy 2) dmg 3) gly 4) $edta^{4-}$	1) CO 2) NO ₂		
15. Oxidation number and effective atomic number	3) CO_3^{2-} 4) NH ₃		
of central metal ion in ferrocene respectively is	23. The oxidation state of iron in Fe[η^5 - (C ₆ H ₅) ₂] is		
1) +1, 35 2) +2, 35	1) + 1 $2) + 3$ $3) + 2$ $4) - 3$		
3) +3, 36 4) +2, 36	24. Which of the following is a π -complex?		
16. The coordination number and primary valence	1) [Fe($\eta^5 - C_5H_5$) ₄] 2) [CoCl ₂ (en) ₂]SO ₄		
of Cr in trisoxalato chromium (III) ion is	3) $[CuCl_4]^{2}$ 4) Li(AlH ₄)		
1) 3, 3 (2) 6, 3	25. Which of the following statement(s) is correct?		
3) 6, 64) Unpredictable	1) Bond length of C-O in metal carbonyl is less		
17. What is the secondary valency of the metal in	than in CO molecular state		
the complex bis(ethane-1, 2-diammine)	2) Shape of $[PtCl_4]^{2-}$ is square planar		
difluorido cobalt (III) perchlorate?	3) In square planar complexes, metal		
1) 4 2) 2 3) 3 4) 6	assumes sp ³ hybridization		
18. The coordination number and oxidation	4) The complex $[Co(NH_3)_3Cl_3]$ gives white ppt.		
number of x in the compound [x(SO ₄)(NH ₃) ₅]Cl	with AgNO ₃ solution		
will be	26. Arrange the following metal carbonyl in		
1) 6 and 4 2) 10 and 3	increasing order of bond length of CO		
3) 2 and 6 4) 6 and 3	Ni(CO) ₄ , $[Co(CO)_4]^-$, $[Fe(CO)_4]^2$		
19. In complex $MCl_3.5H_2O$, the secondary valency	I II III		
of metal is 6 and it has no molecule of water	1) III < I < II 2) I < II < III		
present out of coordination sphere. Calculate	3) I < III < II 4) III < II < I		
the volume of 0.1 M AgNO ₃ solution needed to			

NEET	Co – Ordination Compounds		
27. The neutral binary complexes formed by metal	34. Which of the following is an example of		
and CO ligands are collectively called	coordination isomerism?		
1) Heteroleptic carbonyls	1) $[Co(NH_3)_5Br]SO_4$ and $[Co(NH_3)SO_4]Br$		
2) Homoleptic carbonyls	2) $[Co(NH_3)_5NO_2]Cl_2$ and $[Co(NH_3)_5ONO]Cl_2$		
3) Polycarboxy complexes	3[Co(NH ₃) ₆][Cr(CN) ₆]and [Cr(NH ₃) ₆ [Co(CN) ₆]		
4) Polynuclear complexes	4) All of these		
28. Which of the following is a π - acid ligand?	35. Total number of geometrical isomers for		
1) ONO ⁻ 2) CO	[Pt(NH ₃)(Br)(Cl)(l)(NO ₂)(py)] is		
3) NO_2^- 4) Cl^-	1) 6 2) 36 3) 10 4) 15		
29. Ferrocene is	36. The coordination compound $[Co(NH_3)_6]$		
1) $Fe(\eta^6 - C_5H_5)_2$ 2) $Fe(\eta^2 - C_5H_5)_2$	[Cr(CN)₀] can exhibit		
3) $Cr(\eta^5 - C_5H_5)_2$ 4) Os $(\eta^5 - C_5H_5)_2$	1) Hydrate isomerism		
30. The total number of π - bonds possible in	2) Ionisation isomerism		
[Ni(CO) ₄] is	3) Coordination isomerism		
1) 4 2) 8	4) All of these		
3) 12 4) 6	37. The complex [M(CO) ₅ (SCN)]Cl and		
31. Which water of the following is π - acid ligand?	[Mn(CO)5(NCS)]Cl are		
1) CO 2) NO ⁺	1) Resonating forms		
3) $CH_2 = CH_2$ 4) All of these	2) Linkage isomers		
32. The solution of which of the following	3) Co-ordination isomers		
complexes will be non-conducting?	4) Ionisation isomers		
$CI NH_3 CI CI NH_3 NH_3 NH_3 NH_3 NH_3 NH_3 NH_3 NH_3$	38. Which of the following square planar		
CoCl Co	complexes will be able to show geometrical		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	isomerism?		
NH ₃ Cl ₂ NH ₃	$1) MX_4 2) MX_3 Y$		
NH ₃ Co Co Co Co	3) $M(XX')_2$ 4) $M(YY)_2$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	39. The number of possible isomer for the complex		
5)	ion [Coen(Cl) ₂ Br ₂ ⁻] is		
33. Maximum number of isomers are formed by $1) [E_2(U, O)]^{3+}$	1) 2 2) 3 3) 4 4) 6		
1) $[Fe(H_2O)_6]^{3+}$ 2) $[Fe(C,O)_6]^{3-}$	40. Which is an example of coordination		
 2) [Fe(C₂O₄)₃]³⁻ 3) [Pt(NH₃) BrCl(NO₂)]SO₄ 	isomerism?		
4) $[CO(NH_3)_4(H_2O)_2]Cl_3$	1) $[Co(NO_2)(NH_3)_5]^{2+}$, $[Co(ONO)(NH_3)_5]^{2+}$		
	2) $[Co(NO_3)(NH_3)_5]SO_4$, $[Co(SO_4)(NH_3)_5]NO_3$		
	3) $[Cr(H_2O)_6]Cl_3$, $[CrCl(H_2O)_5]Cl_2.H_2O$		
	4)[Co(NH ₃) ₆][Cr(CN) ₆] & [Cr(NH ₃) ₆] [Co(CN) ₆]		
20 E- TECH ACADEM	Y KURLA, MUMBAI, MAHARASHTRA -70 Ph: 9833905914		

NEET Co – Ordination Compour			
41. [Pt(NH ₃)(py)(CN)(NO ₂)] can have maximum	Which of the following set of compounds is		
number of geometrical isomers equal to	optically active?		
1) 2 2) 3 3) 4 4) 5	1) I & II only 2) I & III only		
42. The correct IUPAC name of	3) II & III only 4) I, II & III		
[Pt(en) ₂ Cl(ONO)] ⁺⁺ is	47. $[Pt(NH_3)_4Cl_2]Br_2$ and $[Pt(NH_3)4Br_2]Cl_2$ related		
1) Chlorodiethylenediaminenitritoplantinum (IV)	to each other as		
ion	1) Optical isomers 2) Linkage isomers		
2) Bis(ethylenediamine)chloronitro-o- platinum	3) Ionization isomers4) Co-ordination isomers		
(IV) ion	48. Identify the false statement		
3) Chloridobis(ethylenediamine) nitritoplatinum	1) The general electronic configuration of the		
(IV) ion	transition elements is (n-1) d ¹⁻¹⁰ ns ¹⁻²		
4) Chlorodiethylenediaminenitro-o- platinum(IV)	2) IUPAC name of $K_3[Al(C_2O_4)_3]$ is potassium		
ion	tris (oxalate) aluminate (III)		
43. Which of the following is/are correct regarding	3) Oxidation state of Na in sodium amalgam is		
this complex? [CrCl ₂ (OH ₂)(NH ₃) ₂] ⁻	+1		
a) It shows geometrical isomerism	4) BF ₃ is weakest Lewis acid amongst all BX_3		
b) It shows optical isomerism	49. The complex having square planar geometry is		
c) It shows ionization isomerism	1) $[PtCl_4]^{2-}$ 2) $[CuCl_4]^{2-}$		
d) It shows hydrate isomerism	3) $[NiCl_4]^{2-}$ 4) All of these		
1) a only2) Both a & b	50. The complex with maximum number of		
3) a, b & c 4) a, b, c & d	stereoisomers is		
44. Which type of isomerism is shown by cis	1) $[PtCl_3(C_2H_4)]^-$ 2) $[CuBr_2Cl_2]^{-2}$		
$[Co(en)_2Br_2]^+?$	3) $[Co(ox)_3]^{-3}$ 4) $[Cr(NH_3)_2(en)_2]^{+3}$		
1) Geometrical and co-ordination	51. Facial and meridional isomerism is exhibited by		
2) Optical	which of the following complex?		
3) Geometrical and linkage	1) MA_4B_2 2) MA_3B_3		
4) Both (1) & (2)	3) $M(AA)_3$ 4) $M(AB)_3$		
45. Which of the following type of complex can	52. In aqueous solution, complex		
exhibit facial and meridional isomers?	[Co(NH ₃) ₆][Cr(CN) ₆] exists as		
1) $[MA_4B_2]$ 2) $[MA_3B_3]$	1) $[Co(NH_3)_6]^{3+}$ and $[Cr(CN)e]^{3-}$		
3) $[MA_2B_2]$ 4) $[MABCDEF]$	2) $[Co(NH_3)_6]^{2+}$ and $[Cr(CN)e]^{2-}$		
46. $[CoCl_2(en)_2]^+ \rightarrow (I)$	3) $[Co(NH_3)_6]^{3-}$ and $[Cr(CN)e]^{3+}$		
$[Co(NH_3)Cl(en)_2]^{2+} \rightarrow (II)$	4) Does not dissociate		
$[Co(NH_3)_2Cl_2(en)] + (cis) \rightarrow (III)$			

NEET	Co – Ordination Compounds
53. The IUPAC name of the following complex	60. Which of the following is incorrect ?
$[(CO)_3Fe(CO)_3Fe(CO)_3]$ is	1) $[NiCl_4]^{2-}$ is
1) Tricarbonyl iron (0) - μ -tricarbonyl iron (0)	2) dsp^2 , paramagnetic, +2
2) Non-carbonyl di iron (1)	3) sp ³ , diamagnetic, 0
3) Hexacarbonyl iron (0) - μ - tricarbonyl iron (II)	4) sp ³ , paramagnetic, $+2$
4) Tri- μ -carbonyl-bis (tricarbonyl iron (0)	61. Highest magnetic moment is possessed by
54. Which of the following complex can exhibit	1) $[Ni (H_2O)_6]^{2+}$ 2) $[Co (NH_3)_6]Cl_3$
geometrical isomerism?	3) $[Zn (H_2O)_6]^{2+}$ 4) Cis-platin
1) $[Pt(ox)_2]^{-2}$ 2) $[Pt(gly)_2]$	62. Which of the following complex has highest
3) $[Pt(en)_2]^{+2}$ 4) All of these	magnetic moment?
55. The value of 'x' in the complex is	1) $[FeFe]^{3}$ 2) $[Co (NH_3)_6]^3$ +
$(NH_3)_4C_0 \longrightarrow C_0(NH_3)_4](SO_4)_x$	3) $[Fe (CN)_6]^{4-}$ 4) $[Ni (CN)_4]^{2-}$
$(\mathrm{INH}_3)_4\mathrm{CO}$ OH $\mathrm{CO}(\mathrm{INH}_3)_4\mathrm{J}(\mathrm{SO}_4)_\mathrm{x}$	63. The stability constants of the complexes formed
1) 5 2) 2 3) 6 4) 4	by a metal ion (M^{2+}) with NH_3 , CN^- , H_2O and
56. fac-mer isomerism is exhibited by	en are of the order of 10^{11} , 10^{27} , 10^{15} and 10^{8}
1) $[Co(NH_3)_3Cl_3]$ 2) $[Co(H_2O)_5Cl]Cl_2$	respectively. Then
3) $[Cr(ox)_3]^{3-}$ (4) $[MnCl_4]^{2-}$	1) en is the strongest ligand
57. Which type of isomerism is shown by both	2) CN ⁻ is the strongest ligand
complex A and B?	3) The strength of the ligands has no relationship
$[Cr(H_2O_6)] Cl_3 and [Cr(H_2O)_4] Cl_2. 2H_2O$	with given values
A B E-TECH	4) All ligands are equally strong
1) Electronic isomerism 2) Hydrate isomerism	64. If a multidentate ligand is cyclic in nature and
3) Ionisation isomerism 4) No isomerism	there are no unfavourable steric factors, then
58. What is the overall dissociation constant for	the stability of complex is greatly enhanced.
the [M(NH ₃) ₄] ²⁺ ion if p for this complex is	This is called
2.1×10^{13} ?	 Ligand effect Co-ordination effect Macroqualic effect Supergia effect
1) 2.1×10^{13} 2) 1.05×10^{13}	3) Macrocyclic effect 4) Synergic effect65. Which is a diamagnetic complex?
3) 4.2×10^{13} 4) 4.7×10^{-14}	1) $[Fe(H_2O)_6]^{3+}$ 2) $[Fe(H_2O)_6]^{2+}$
59. dmg + NiCl ₂ + NH ₄ OH \rightarrow Complex (A) +	$\begin{array}{cccc} 1) [Fe(\Pi_2 O)_6] \\ 3) [Fe(CN)_6]^{3-} \\ \end{array} (4) [Fe(CN)_6]^{4-} \\ \end{array}$
$NH_4Cl + H_2O$. The hybridization, Magnetic	66. What is the correct relationship of splitting of
character and oxidation state of nickel in	tetrahedral and octahedral system?
complex (A) are respectively	
1) dsp ² , diamagnetic, +2 2) dsp ² , paramagnetic, +2	1) $\Delta_t = -\Delta_0$ 2) $\Delta_t = \frac{4}{9}\Delta_0$
3) sp ³ , diamagnetic, 0 4) sp ³ , paramagnetic, +2	3) $\Delta_0 = 4\Delta_t$ 4) $\Delta_t = \frac{9}{4}\Delta_0$

NEET	Co – Ordination Compounds		
67. What is the wrong statement regarding	3) Greater is the basic character of the ligand,		
stability of coordination compounds?	greater is the stability of the complex		
1) Greater the charge on central metal greater the	4) Chelate complexes have low stability constant		
stability of the compound	73. Which among the following complex is/are		
2) Chelation increases stability	outer orbital complex?		
3) Conjugation on chelating decreases stability	$[Co(CN)_6]^{3-}$ $[Fe(H_2O)_6]^{2+}$		
4) Stability is a thermodynamics concept	(I) (II)		
68. Which of the following is not the property of	$[FeF_6]^{3-}$ $[CoF_6]^{3-}$		
Mn ₂ (CO) ₁₀ ?	(III) (IV)		
1) 1 Mn-Mn bond	1) II, III, IV 2) II, III only		
2) 10 Mn-CO bond	3) I, IV only 4) II only		
3) It has two square pyramidal unit	74. Which of the following pairs contains only		
4) It is a liquid	tetrahedral complex?		
69. Irving-William's order for increasing stability	1) $[ZnCl_4]^{2-}$ & $[MnCl_4]^{2-}$		
of complexes formed by Co, Ni, Cu and Fe in	2) $[Zn(NH_3)_4]^2 + \& [Cu(NH_3)_4]^{2+}$		
+2 oxidation state is	3) $[MnCl_4]^2$ - & $[Ni(CN)_4]^2$ -		
1) Co < Ni < Cu < Fe	4) $[ZnCl_4]^{2-}$ & $[Ni(CN)]^{2-}$		
2) Fe < Cu < Ni < Co	75. Which among the following complex will have		
3) Fe < Co < Ni < Cu	zero dipole moment?		
4) Ni < Co < Cu < Fe	(I) - $[Ni(CN)_4]^{2-}$ (II) - cis- $[Pt(NH_3)_2Cl_2]$		
70. Which one species is square planar is geometry?	(III) - trans-[Pt(NH ₃) ₂ Cl ₂]		
1) $[Cu(NH_3)_4]^{2+}$ 2) $[NiCl_4]^{-2}$	1) III only 2) I, III 3) I only 4) II, III		
3) $[Ni(CO)_4]$ 4) $[FeCl_6]^{4}$	76. Which of the following pair are having same		
71. In which pair of complex the EAN of metal	hybridization of central atom?		
atom/ ion is same?	1) $[PtCl_4]^{2-}$ and $[NiCl_4]^{2-}$		
1) $[Ni(en)_2]^{2+}$, $[Sc(H_2O)_6]^{3+}$	2) $[cu(NH_3)_4]^{2+}$ and $[PtCl_4]^{2-}$		
2) $[Fe(CN)_6]^{3-}$, $[Co(CN)_6]^{3-}$	3) $[Ni(CO)_4]$ and $[Ni(CN)_4]^{2-1}$		
3) $[Ni(CO)_4]$, $[Fe(CN)_6]^{4-}$	4) All of these		
4) [Ni(en) ₂], [Fe(H ₂ O) ₆] ²⁺	77. Find the correct match:		
72. Which one of the following statement is	Complex Nature		
incorrect?	1) $K_4[Fe(CN)_6]$ Paramagnetic		
1) Greater the stability constant of complex	2) $[FeF_6]^{4-}$ sp ³ d ² hybridisation		
greater is its stability	3) [Ni(CO) ₄] Square planar complex		
2) Greater the charge on the central metal ion	4) $[Cu(NH_3)_4]^{2+}$ Diamagnetic, square planar		
greater is the stability of complex	Complex		
23 E- TECH ACADEM	Y KURLA, MUMBAT, MAHARASHTRA -70 Ph: 9833905914		

NEET	Co – Ordination Compounds		
78. Which is mismatched regarding spin only	87. The factors which can increase the stability of		
magnetic moment of the complexes?	complex is		
1) $[FeFe]^{3-} = 5.92 \text{ BM}$	1) Presence of chelate rings		
2) $Cr(CO)_6 = 0.00 BM$	2) Synergic effect		
3) $[Ni(CN)_4]^{2-} = 0.00 BM$	3) Macrocyclic effect		
4) cis Platin = 2.84 BM	4) All of these		
79. The EAN of Mn in $Mn_2(CO)_{10}$ is	88. Identify the metal that form a tetrahedral		
1) 35 2) 38 3) 36 4) 37	complex with Cl ⁻ ligand and of magnetic		
80. Of the following complexes, the one with the	moment 5.91 BM in +2 oxidation state		
largest value of the crystal field splitting is	1) Ni 2) Mn 3) Cr 4) Fe		
1) $[Fe(H_2O)_6]^{+3}$ 2) $[Ru(CN)_6]^{3-3}$	89. Which one of the following statements is true		
3) $[Fe(H_2O)_6]^{+2}$ 4) $[Fe(NH_3)_6]^{3+}$	about [Cu(NH ₃) ₄] ⁺² primary valency and EAN ?		
81. Magnetic moment of [Ag(CN) ₂] ⁻ is zero. How	1) +1, 35 2) +2, 35		
many unpaired electrons are there?	3) +3, 36 4) +2, 36		
1) Zero 2) 4 3) 3 4) 1	90. Which of the following has highest magnetic		
82. The hybridization of beryllium in the complex	moment?		
$[Be(H_2O)_4](NO_3)_2]$ is	1) $K_4[Fe(CN)_6]$ 2) $[Fe(H_2O)_6]SO_4$		
1) sp 2) sp ² 3) sp ³ 4) sp ³ d ²	3) $K_3[Fe(CN)_6]$ 4) $[Co(NH_3)_6]SO_4$		
83. When O_2 reacts with PtF_6 , which one of the	91. Low spin complex is formed by		
following is formed?	1) sp^3d^2 2) d^2sp^3 hybridization		
1) $O_2^{\oplus} PtF_6^{(\cdot)}$ 2) $PtOF_5$	3) sp ³ hybridisatin 4) sp ³ hybridization		
3) $O_2^{(-)}PtF_6^{\oplus}$ 4) $PtOF_4$	92. In which of the following complex, central		
84. Choose the correct statement	metal is dsp ² hybridized?		
1) In [NiCl ₄] , Ni has dsp ² -hybridisation	1) $[PtCl_4]^{2-}$ 2) $[NiCl_4]^{2-}$		
2) $[PtCl_2(NH_3)_2]$ has three stereisomers and two	3) $[cuCl_4]^{2-1}$ 4) All of these		
3) $[Fe(CN)_6]^{4(-)}$ is diamagnetic	93. The geometry of [NiCl ₄] ²⁻ and [PtCl ₄] ²⁻ are		
4) $[Cr(ox)_3]^{3(-)}$ has three stereiosomers and two	1) Tetrahedral		
structural isomers possible	2) Square planar		
85. In $[Fe(H_2O)_6]^{2+}$, hybridization of the central	3) Square planar and tetrahedral respectively		
atom and geometry is	4) Tetrahedral and square planar respectively		
1) sp^3d^2 , octahedral 2) d^2sp^3 , octahedral	94. Which of the following complex ion is expected		
3) $sp^{3}d$, pentagonal 4) sp^{3} , tetrahedral	to absorb visible light?		
86. The CFSE value of d ⁵ ion in a weak octahedral	1) $[Ni(CO)_4]$		
ligand field is	2) $[Zn(NH_3)_6]^{2+}$		
1) -8 Dq 2) 4 Dq 3) -6 Dq 4) 0 Dq 24 E- TECH ACADEM	3) $[Sc(H_2O)_3(NH_3)_3]^{3+}$ 4) $[Cr(NH_3)_6]^{3+}$ Y KURLA, MUMBAL, MAHARASHTRA -70 Ph: 9833905914		

NEET	Co – Ordination Compounds		
95. Hybrid state of Sn in [Sn(OH) ₆] ²⁻	103. Which one of the following complex has		
1) sp^3 2) sp^3d^2 3) sp^3d 4) sp^3d^3	maximum energy difference between t_{2g} and e_g		
96. Amongst the following ions which one has the	set of orbitals?		
highest magnetic moment value?	1) $[Ni(NH_3)_6]^{2+}$ 2) $[Cr(NH_3)_6]^{3+}$		
1) $[Cr(H_2O)_6]^{3+}$ 2) $[Fe(H_2O)_6]^{2+}$	3) $[Mo(NH_3)_6]^{3+}$ 4) $[W(NH_3)_6]^{3+}$		
3) $[Zn(H_2O)_6]^2$ + 4) $[FeFe]^{3-2}$	104. The hybridization of Ni in [NiCl ₄] ⁻ and Pt in		
97. The geometries of Ni(CO) ₄ and $[Cu(NH_3)_4]^{+2}$	[PtCl ₄] ⁻ respectively are		
are respectively	1) sp^3 , sp^3 2) dsp^2 and dsp^2		
1) Tetrahedral and square planar	3) dsp^2 and sp^3 4) sp^3 and dsp^2		
2) Both tetrahedral	105. The outer orbital complex is		
3) Square planar and tetrahedral	1) $[Cr(NH_3)_6]^{3+}$ (2) $[Ni(H_2O)_6]^{2+}$		
4) Both square planar	3) $[V(H_2O)_6]^{3+}$ (4) $[Co(NH_3)_6]^{3+}$		
98. Which of the following complexes is the	106.Among the divalent ions of first row of		
example of dsp ² hybridisation?	transition element, the tendency to form stable		
1) $[Ni(CO)_4]$ 2) $[Ni(CN)_4]^{-2}$	complexes increases as		
3) $[Zn(NH_3)_4]^{-2}$ 4) $[ZnCl_4]^{2-2}$	1) $Mn^{II} < Fe^{II} < Ni^{II} < Cu^{II}$		
99. The outer orbital complexes among the	2) $Mn^{II} > Cu^{II} > Ni^{II} < Fe^{II}$		
following are	3) $Cu^{II} > Mn^{II} > Fe^{II} < Ni^{II}$		
I. $[Co(CN)_6]^{-3}$ II. $[Fe(H_2O)_6]^{+2}$	4) $Ni^{II} > Mn^{II} > Cu^{II} > Fe^{II}$		
III. $[Co(NH_3)_6]^{+3}$ IV. $[CoFe_6]^{-3}$	107.Organometallic compound is		
1) II & IV 2) II & III	1) Na_2CO_3 2) $Na-O-CH_3$		
3) I & IV 4) I & II	$3) \operatorname{NaNH}_2 \qquad (4) \operatorname{Na}_2 C_2$		
100. The spin only magnetic moment of metal ion	108.Zinc but not copper is used for the recovery of		
having d ⁸ system in square planar complex with	Ag from the complex [Ag(CN) ₂] ⁻ because		
strong ligand field is	1) Zinc is cheaper		
1) Zero 2) 2.83 BM	2) Zn is more powerful reducing agent		
3) 3.87 BM 4) 4.90 BM	3) Cu does not form complex		
101.Which of the following is most stable	4) Both (1) & (2)		
complex?	109. Dimethyl glyoxime reagent is used as co-		
1) $[Fe(CN)_6]^{4-}$ 2) $[Fe(H_2O)_6]^{3+}$	ordinating reagent in the quantitative		
3) $[FeFe]^{3-}$ 4) $[Fe(NH_3)_6]^{3+}$	estimation of		
102. Which one of the following complex is	1) Copper 2) Palladium		
expected to be of violet colour?	3) Silver 4) Nickel		
1) $[Ni(H_2O)_6]^{2e}$ (aq) 2) $[Ni(H_2O)_4(en)]^{2\oplus}$ (aq)			
3) $[Ni(H_2O)_2(en)]^{2\oplus}$ (aq) 4) $[Ni(en)_3]^{2\oplus}$ (aq)			

Co-Ordination Compounds

110. The number of five membered and six membered ring that can be formed in Ni(dmg)₂ respectively is

1) 1, 1 2) 2, 2 3) 1, 2 4) 2, 1

111.Match the information given in Column-I and

Column-II.

mn-II

- a) Brown ring (i) $Fe_4[Fe(CN)_6]_3$
- b) Prussian tube (ii) $K[PtCl_3(\eta^2 C_2H_4)]$
- c) Zeiss's salt (iii) (Ph₃P)₃RhCl

d)Wilkinson catalyst(iv) [Fe(H₂O)₅NO]⁺²

- 1) a(i), b(iv), c(iii), d(ii)
- 2) a(i), b(iv), c(ii), d(iii)
- 3) a(iv), b(i), c(ii), d(iii)
- 4) a(iv), b(i), c(iii), d(ii)

112.Identify incorrect statement

1) Tetrahedral complex containing two unsymmetrical bidentate ligand can exhibit optical activity as they lack plane of symmetry

2) Zeise's salt is an organometallic compound containing C_2H_4 molecule as one of this ligand

3) EAN (effective atomic number) of Fe in its complex is always 36

4) All of these

113.Dimethyl glyoxime gives a red precipitate with Ni²⁺ which is used for its detection. To get this precipitate readily, the best p^H range is

1) < 1 2) 2 - 3 3) 3-4 4) 9 - 11

Co – Ordination Compounds										
				LF	EVEL	-2 KE				
	1	2	3	4	5	6	7	8	9	10
	4	4	4	3	4	3	1	3	1	3
	11	12	13	14	15	16	17	18	19	20
	2	4	3	4	4	2	4	4	2	3
	21	22	23	24	25	26	27	28	29	30
	2	1	3	1	2	2	2	2	1	3
	31	32	33	34	35	36	37	38	39	40
	4	3	3	3	4	3	2	3	3	4
	41	42	43	44	45	46	47	48	49	50
	2	3	2	2	2	4	3	3	1	4
	51	52	53	54	55	56	57	58	59	60
	1	2	4	2	2	1	2	4	1	1
	61	62	63	64	65	66	67	68	69	70
	1	1	2	3	4	2	3	4	3	1
	71	72	73	74	75	76	77	78	79	80
	3	4	1	1	2	2	2	4	3	2
	81	82	83	84	85	86	87	88	89	90
	1	3	1	3	1	4	4	2	2	2
	91	92	93	94	95	96	97	98	99	100
	2	1	4	4	2	4	1	2	1	1
	101	102	103	104	105	106	107	108	109	110
	1	4	4	4	2	1	4	4	4	2
	111	112	113							
	3	3	4							

NE	ET		Co – Ordination Compounds
	LEVEL-2	5.	The pair in which both species have the same
1.	In which of the following pairs, both the		magnetic moment (spin only) value is :
	complexes show optical isomerism?		1) $[Cr(H_2O_6]^{2^+}, [CoCl_4]^{2^-}$
	1) cis-[Cr(C ₂ O ₄) ₂ Cl ₂] ³⁻ , cis-[Co(NH ₃) ₄ Cl ₂]		2) $[Cr(H_2O)_6]^{2+}$, $[Fe(H_2O)_6]^{2+}$
	2) [Co(en)3] Cl3 ,cis-[Co(en)2Cl2]Cl		(3) $[Mn(H_2O)_6]^{2+}$, $[Cr(H_2O)_6]^{2+}$
	3) [PtCl(dien)Cl], [NiCl ₂ Br ₂] ²⁻		4) $[CoCl_4]^{2-}$, $[Fe(H_2O)_6]^{2+}$
	4) [Co(NO ₃) ₃ (NH ₃) ₃], cis-[Pt(en) ₂ Cl ₂]	6.	The number of possible isomers of an
2.	The correct order for the wavelength of		octahedral complex [Co(C2O4)2(NH3)2] ⁻ is :
	absorption in the visible region is :		1) 1 2) 2 3) 3 4) 4
	1) $[Ni(NO_2)_6]^{4-} < [Ni(NH_3)_6]^{2+} < [Ni(H_2O)_6]^{2+}$	7.	The ligands in anti-cancer drug cis-platin are :
	2) $[Ni(NO_2)_6]^{4-} < [Ni(H_2O)_6]^{2+} < [Ni(NH_3)_6]^{2+}$		1) NH ₃ ,Cl 2) NH ₃ ,H ₂ O
	3) $[Ni(H_2O)_6]^{2+} < [Ni(NH_3)_6]^{2+} < [Ni(NO_2)_6]^{4+}$		3) C1, H ₂ O 4) NO, C1
	4) $[Ni(NH_3)_6]^{2+} < [Ni(H_2O)_6]^{2+} < [Ni(NO_2)_6]^{4-}$	8.	Which of the following coordination entities
3.	Assertion : Potassium ferrocyanide is	_	should be expected to absorb light of lowest
	diamagnetic, whereas potassium ferricyanide is	-0	frequency?
	paramagnetic.	_	1) $[Cr(en)_3]^{3+}$ 2) $[CrCl_6]^{3-}$
	Reason : Crystal field splitting in ferrocyanide		3) $[Cr(NH_3)_6]^{3+}$ 4) $[Cr(CN)_6]^{3-}$
	ion is greater than that of ferricyanide ion.	9.	Assertion : When NO reacts with FeSO ₄ , a
	1) If both Assertion and Reason are true and the reason is the correct explanation of Assertion.		brown coloured complex is formed.
	2) If both Assertion and Reason are true but	× 1 / ×	Reason : In the complex, the coordination
	reason is not the correct explanation of		number of Fe is 6.
	Assertion.		1) Both A and R are true and R is the correct explanation of A.
	3) If Assertion is true but Reason is false.		2) Both A and R are true but R is not correct
	4) If both Assertion and Reason are false.		explanation of A
4.	Among the following, the species having		3) A is true but R is false
	square planar geometry for central atom are :		4) A is false but R is true
	i. [XeF ₄] ii. SF ₄		5) Both A and R are false
	iii. $[NiCl_4]^{2-}$ iv. $[PtCl_4]^{2-}$	10.	Assertion : CO and CN are referred as π acid
	1) i and iv 2) i and ii		ligands.
	3) ii and iii 4) iii and iv		Reason : In CO and CN vacant π type orbitals
			are present.

1) Both A and R are true and R is the correct explanation of A.15. Which one amongst of the following isomerism is shown by [Pt(NH ₃),CL]?2) Both A and R are true but R is not correct explanation of A3) A is true but R is false1) Structural (Conformational)3) A is true but R is false(A is false but R is true (S) Both A and R are false16. [Fe(H:O),NO] ²⁺ is a complex formed during the brown ring test for NO, ion. In this complex, (N) There are three unpaired electron so that its magnetic moment is 3.87 BM (2) NO transfer its electron to Fe^{2+} so that iron as $Fe(1)$ and NO as NO ⁻ (3) The colour is because of charge transfer (4) All of the above statements are correct.10. When AgNO3 is added to a solution of Co(NH3)5Cl3, the precipitate of AgCl shows two ionizable chloride ions. This means : 1) Two chlorine atoms satisfy primary valency all one secondary valency 2) One chlorine atoms satisfy secondary valency11. L of mixture X + excess $AgNO_1 \rightarrow Y$ 11. L of mixture X + excess $BaCl_2 \rightarrow Z$ Number of moles Y and Z are 1) 0.03, 0.02 (2) 0.01, 0.02 (3) 0.02, 0.01 (4) 0.02, 0.0214. The thypothetical complex (Chlorodiaquatriamminecobalt (1II) chloride can be represented as (1) [CoC(NH3)3 (H2O)2]Cl2 (2) [Co(NH3)3 (H2O)2]Cl2 (2) [Co(NH3)3 (H2O)2]Cl215. Colordiaguatriamminecobalt (1) [CoC(NH3)3 (H2O)2]Cl2 (2) [Co(NH3)3 (H2O)2]Cl216. Contha3) (H2O)2]Cl317. Colordiaguatriamminecobalt (2) [Co(NH3)3 (H2O)2]Cl2 (2) [Co(NH3)3 (H2O)2]Cl218. Assertion : After spiliting of d-orbitals during complex formation, the orbitals form two sets of orbitals tag and e ₀ octahedral field. Reason : Spiliting of d-orbitals during complex formation field liarode such a C Ni <th>NEET</th> <th>Co – Ordination Compounds</th>	NEET	Co – Ordination Compounds
 2) Both A and R are true but R is not correct explanation of A 3) A is true but R is false 4) A is false but R is true 5) Both A and R are false 11. Which one has the highest paramagnetism ? 1) Ni(CO)4 2) [Co(NH3)₆]Cl₃ 3) [Ni(NH3)₆]Cl₂ 4) [Cu(NH3)₆]Cl₃ 3) [Ni(NH3)₆]Cl₂ 4) [Cu(NH3)₆]Cl₂ 12. For the square planar complex [M(1) (2) (3) (4)] (where, M =central metal ; a, b, c and d are monodentate ligands) the number of possible geometrical isomers are 1) 1 2) 2 3) 3 4) 4 13. When AgNO₃ is added to a solution of Co(NH₃)₅Cl₃, the precipitate of AgCl shows two ionizable chloride ions. This means : 1) Two chlorine atoms satisfy primary valency and one secondary valency 2) One chlorine atoms satisfy primary awell as secondary valency 3) Three chlorine atoms satisfy secondary valency 4) Three chlorine atoms satisfy secondary valency 4) Three chlorine atoms satisfy secondary valency 3) Three chlorine atoms satisfy secondary valency 4) Three chlorine atoms satisfy secondary valency 3) Three chlorine atoms satisfy secondary valency 4) Three chlorine atoms satisfy secondary valency 4) Three chlorine atoms satisfy secondary valency 3) Three chlorine atoms satisfy secondary valency 4) Three chlorine atoms satisfy secondary valency 5) If both assertion and reason are true and reason is not the correct explanation of assertion. 6) If both assertion and reason are true but reason is not the correct explanation of assertion. 6) If both assertion and reason are false. 19 Co(NH3)₃ (H₂O)₂]Cl₃ 6) Assertion and reason are false.	1) Both A and R are true and R is the correct	15. Which one amongst of the following isomerism
explanation of A3) A is true but R is false3) A is true but R is true5) Both A and R are false11. Which one has the highest paramagnetism ?1) Ni(CO)42) [Co(NH3)6]Cl33) [Ni(NH3)6]Cl24) [Cu(NH3)4]Cl23) [Ni(NH3)6]Cl24) [Cu(NH3)4]Cl22) For the square planar complex [M(1) (2) (3) (4)] (where, M =central metal ; a, b, c and d are monodentate ligands) the number of possible geometrical isomers are 1) 12) 23) 31) T 2) 23) 34) 413. When AgNO3 is added to a solution of Co(NH3)5Cl3, the precipitate of AgCl shows two ionizable chloride ions. This means : 1) Two chlorine atoms satisfy primary valency and one secondary valency 2) One chlorine atoms satisfy secondary valency3) Three chlorine atoms satisfy secondary valency1) I footh assertion and reason are true and reason is the correct explanation of assertion. 2) If both assertion and reason are true and reason is the correct explanation of assertion. 2) If both assertion and reason are false.14. The hypothetical can be represented as 1) [CoCl(NH3)3 (H2O)2]Cl2 2] [Co(NH3)3 (H2O)2]Cl2 3) [Co(NH3)3 (H2O)2]Cl2 4) [Co(NH3)3 (H2O)2]Cl33) Optical 4) [Doth assertion and reason are false.19. CoCl(NH3)3 (H2O)2[Cl] 3) [Co(NH3)3 (H2O)2]Cl33) Optical 4) [Dothals form two sets of orbitals L_{2y} and e_{y} octahedral field. Reason : Splitting of d-orbitals occurs only in the	explanation of A.	is shown by [Pt(NH ₃) ₂ Cl ₂] ?
 3) A is true but R is false 4) A is false but R is true 5) Both A and R are false 11. Which one has the highest paramagnetism? 1) Ni(CO)4 2) [Co(NH3)6]Cl3 3) [Ni(NH3)6]Cl2 4) [Cu(NH3)4]Cl2 12. For the square planar complex [M(1) (2) (3) (4)] (where, M =central metal ; a, b, c and d are monodentate ligands) the number of possible geometrical isomers are 1) 1 2) 2 3) 3 4) 4 13. When AgNO3 is added to a solution of Co(NH3)5Cl3, the precipitate of AgCl shows two ionizable chloride ions. This means: 1) Two chlorine atoms satisfy primary valency and one secondary valency 2) One chlorine atoms satisfy secondary valency 3) Three chlorine atoms satisfy secondary valency 4) Three chlorine atoms satisfy secondary valency 4) Three chlorine atoms satisfy secondary valency 3) Three chlorine atoms satisfy secondary valency 4) Three chlorine atoms satisfy secondary valency 4) Three chlorine atoms satisfy secondary valency 4) Three chlorine atoms satisfy secondary valency 3) Three chlorine atoms satisfy secondary valency 4) Three chlorine atoms satisfy secondary valency 3) Three chlorine atoms satisfy secondary valency 4) Three chlorine atoms satisfy secondary valency 5) ClorO(NH3)3 (H2O)2[Cl2 1) [CoC(NH3)3 (H2O)2[Cl] 1) [CoC(NH3)3 (H2O)2[Cl] 4) [Co(NH3)3 (H2O)2[Cl] 4) [Co(NH3)3 (H2O)2[Cl] 4) [Co(NH3)3 (H2O)2[Cl] 4) [Co(NH3)3 (H2O)2[Cl] 5) (ClorOH3)3 (H2O)2[Cl] 4) [Co(NH3)3 (H2O)2[Cl] 5) (ClorOH3)3 (H2O)2[Cl] 5) (ClorOH3)3 (H2O)2[Cl] 6) (ClorOH3)3 (H2O)2[Cl] 6) (ClorOH3)3 (H2O)2[Cl] 6)	2) Both A and R are true but R is not correct	1) Structural 2) Geometrical
4) A is false but R is true 5) Both A and R are falsebrown ring test for NO3 ion. In this complex, image there unpaired electron so that its magnetic moment is 3.87 BM 2) NO transfer its electron to Fe ³⁺ so that iron as Fe(1) and NO as NO ⁺ 12. For the square planar complex [M(1) (2) (3) (4)] (where, M =central metal ; a, b, c and d are monodentate ligands) the number of possible geometrical isomers are 1) 1 2) 2 3) 3 4) 42) NO transfer its electron to Fe ³⁺ so that iron as Fe(1) and NO as NO ⁺ 3) The colour is because of charge transfer 4) All of the above statements are correct.13. When AgNO3 is added to a solution of Co(NH3)5Cl3, the precipitate of AgCl shows two ionizable chloride ions. This means : 1) Two chlorine atoms satisfy primary valency a) Three chlorine atoms satisfy secondary valency11. of mixture X + excess AgNO ₃ \rightarrow Y 11. L of mixture X + excess AgNO ₃ \rightarrow Y 11. L of mixture X + excess BaCl ₂ \rightarrow Z Number of moles Y and Z are 1) 0.03, 0.02 2) 0.01, 0.02 3) 0.02, 0.01 4) 0.02, 0.0214. The hypothetical complex Chlorodiaquatriamminecobalt (III) chloride can be represented as 1) [CoC(NH3)3 (H2O)2[Cl] 2) [Ca(NH3)3 (H2O)2[Cl] 2) [Co(NH3)3 (H2O)2[Cl] 4) [Co(NH3)3 (H2O)2[Cl] 4) [Co(NH3)3 (H2O)2[Cl] 4) [Co(NH3)3 (H2O)2[Cl]15. Chorodiaquatriaminecobalt (III) chloride can be represented as 1) [CoC(NH3)3 (H2O)2[Cl] 4) [Co(NH3)3 (H2O)2[Cl]10. Colorina targe satisfy secondary valency11. Colorina targe satisfy secondary valency12. Colorina targe satisfy secondary valency13. The chlorine atoms satisfy secondary valency14	explanation of A	3) Optical 4) Conformational
 s) Both A and R are false 1) Which one has the highest paramagnetism ? 1) Ni(CO)₄ 2) [Co(NH₃)₆]Cl₃ 3) [Ni(NH₃)₆]Cl₂ 4) [Cu(NH₃)₄]Cl₂ 2) For the square planar complex [M(1) (2) (3) (4)] (where, M = central metal ; a, b, c and d are monodentate ligands) the number of possible geometrical isomers are 1) 1 2) 2 3) 3 4) 4 3) When AgNO₃ is added to a solution of Co(NH₃)₅Cl₃, the precipitate of AgCl shows two ionizable chloride ions. This means : 1) Two chlorine atoms satisfy primary valency and one secondary valency 2) One chlorine atoms satisfy primary valency and one secondary valency 3) Three chlorine atoms satisfy secondary valency 4) Three chlorine atoms satisfy secondary valency 4) Three chlorine atoms satisfy secondary valency 4) Three chlorine atoms satisfy secondary valency 3) Three chlorine atoms satisfy secondary valency 4) Three chlorine atoms satisfy secondary valency 4) Three chlorine atoms satisfy secondary valency 4) Three chlorine atoms satisfy secondary valency 3) Co(NH₃)₃ (H₂O)₂ Cl₂ 4) [Co(NH₃)₃ (H₂O)₂ Cl₂ 5) [Co(NH₃)₃ (H₂O)₂ Cl₃ 6) Co(NH₃)₃ (H₂O)₂ Cl₃ 7) [Co(NH₃)₃ (H₂O)₂ Cl₃ 7) [Co(C	3) A is true but R is false	16. $[Fe(H_2O)_5NO]^{2+}$ is a complex formed during the
 11. Which one has the highest paramagnetism ? Ni(CO)4 C(C(NH3)3)(Cl2 Co(NH3)5Cl2 Co(NH3)5Cl3, the precipitate of AgCl shows two ionizable chloride ions. This means : Two chlorine atoms satisfy primary valency and one secondary valency The chlorine atoms satisfy secondary valency Three chlorine atoms satisfy secondary valency The propertical complex formation at reason are true but reason is the correct explanation of assertion. Three phypo	4) A is false but R is true	brown ring test for NO ₃ ⁻ ion. In this complex,
1) Ni(CO)42) [Co(NH3)6]Cl33) [Ni(NH3)6]Cl24) [Cu(NH3)4]Cl212. For the square planar complex [M(1) (2) (3) (4)] (where, M =central metal ; a, b, c and d are monodentate ligands) the number of possible geometrical isomers are 1) 12) 23) 34) 43) The colour is because of charge transfer (4) All of the above statements are correct.17. Mixture X = 0.02 mole of [Co(NH ₃) ₃ SO ₄]Br and 0.02 mole of [Co(NH ₃) ₃ SO ₄]Br and 0.02 mole of [Co(NH ₃) ₃ SO ₄]Br and 0.02 mole of [Co(NH ₃) ₃ SO ₄]Br and 0.02 mole of [Co(NH ₃) ₃ SO ₄]Br and 0.02 mole of [Co(NH ₃) ₃ SO ₄]Br and 0.02 mole of [Co(NH ₃) ₃ SO ₄]Br and 0.02 mole of [Co(NH ₃) ₃ Br]SO ₄ was prepared in 2L of solution 1 L of mixture X + excess AgNO ₃ \rightarrow Y 1 L of mixture X + excess BaCl ₂ \rightarrow Z Number of moles Y and Z are 1) 0.03, 0.02 2) 0.01, 0.02 3) 0.02, 0.01 4) 0.02, 0.0218. Assertion : [Ti(H ₂ O) ₆] ³⁺ is coloured while [Sc(H ₂ O) ₆] ³⁺ is coloured while [Sc(H ₂ O) ₆] ³⁺ is coloured while [Sc(H ₂ O) ₆] ³⁺ is coloured sent 1) If both assertion and reason are true and reason is the correct explanation of assertion. 2) If both assertion and reason are true and reason is not the correct explanation of assertion. 3) If assertion is true but reason is false. 4) If both assertion and reason are false.19. [CoC(NH ₃) ₃ (H ₂ O) ₂]Cl311 If both assertion and reason are false.19. [Co(NH ₃) ₃ (H ₂ O) ₂]Cl311 If both assertion and reason are false.19. [Co(NH ₃) ₃ (H ₂ O) ₂]Cl311 If both assertion and reason are false.19. [Co(NH ₃) ₃ (H ₂ O) ₂]Cl311 If both assertion and reason are false.19. [Co(NH ₃) ₃ (H ₂ O) ₂]Cl311 If both assertion and reason are		1) There are three unpaired electron so that its
 3) [Ni(NH₃)₆]Cl₂ 4) [Cu(NH₃)₄]Cl₂ For the square planar complex [M(1) (2) (3) (4)] (where, M =central metal ; a, b, c and d are monodentate ligands) the number of possible geometrical isomers are 1) 1 2) 2 3) 3 4) 4 When AgNO₃ is added to a solution of Co(NH₃)₅Cl₃, the precipitate of AgCl shows two ionizable chloride ions. This means : 1) Two chlorine atoms satisfy primary valency and one secondary valency One chlorine atoms satisfy primary as well as secondary valency One chlorine atoms satisfy secondary valency Three chlorine atoms satisfy secondary valency Three chlorine atoms satisfy secondary valency The hypothetical complex Chlorodiaquatriamminecobalt (III) chloride can be represented as [CoC(NH₃)₃ (H₂O)₂Cl₂ [CoC(NH₃)₃ (H₂O)₂Cl₃ [Co(NH₃)₃ (H₂O)₃Cl₃ 	11. Which one has the highest paramagnetism?	magnetic moment is 3.87 BM
 12. For the square planar complex [M(1) (2) (3) (4)] (where, M =central metal ; a, b, c and d are monodentate ligands) the number of possible geometrical isomers are 1) 1 2) 2 3) 3 4) 4 13. When AgNO3 is added to a solution of Co(NH3)5Cl3, the precipitate of AgCl shows two ionizable chloride ions. This means : 1) Two chlorine atoms satisfy primary valency and one secondary valency 2) One chlorine atoms satisfy primary as well as secondary valency 3) Three chlorine atoms satisfy secondary valency 4) Three chlorine atoms satisfy secondary valency 14. The hypothetical complex Chlorodiaquatriamminecobalt (III) chloride can be represented as 1) [CoC(NH3)3 (H2O)2[Cl] 2) [Co(NH3)3 (H2O)2[Cl] 3) [Co(NH3)3 (H2O)2[Cl] 4) [Co(NH3)3 (H2O)2]Cl] 4) [Co(NH3)3 (H2O)2]Cl3 	1) Ni(CO) ₄ 2) [Co(NH ₃) ₆]Cl ₃	2) NO transfer its electron to Fe^{2+} so that iron as
 (where, M =central metal ; a, b, c and d are monodentate ligands) the number of possible geometrical isomers are 1) 1 2) 2 3) 3 4) 4 (where, M =central metal ; a, b, c and d are monodentate ligands) the number of possible geometrical isomers are 1) 1 2) 2 3) 3 4) 4 (No the AgNO3 is added to a solution of Co(NH3)5Cl3, the precipitate of AgCl shows two ionizable chloride ions. This means : 1) Two chlorine atoms satisfy primary valency 2) One chlorine atoms satisfy primary as well as secondary valency 3) Three chlorine atoms satisfy secondary valency 4) Three chlorine atoms satisfy secondary valency 14. The hypothetical complex Chlorodiaquatriamminecobalt (III) chloride can be represented as 1) [Cocl(NH3)3 (H2O)]Cl3 14. The hypothetical complex Chlorodiaquatriamminecobalt (III) chloride can be represented as 1) [Cocl(NH3)3 (H2O)]Cl3 15. The hypothetical complex chlorodiaquatriamminecobalt (III) chloride can be represented as 1) [Cocl(NH3)3 (H2O)]Cl3 16. Col(NH3)3 (H2O)]Cl3 17. Col(NH3)3 (H2O)]Cl3 18. Assertion : After spiliting of d-orbitals during complex formation, the orbitals form two sets of orbitals t_{2x} and e_x octahedral field. Reason : Splitting of d-orbitals occurs only in the mathematic context and the context and t	3) [Ni(NH ₃) ₆]Cl ₂ 4) [Cu(NH ₃) ₄]Cl ₂	Fe(I) and NO as NO ⁺
(where, M = tentral heral y , y , y , z and u are monodentate ligands) the number of possible geometrical isomers are 11 2) 2 3) 3 4) 417. Mixture $X = 0.02$ mole of $[Co(NH_3)_3CO_4]Brand 0.02 mole of [Co(NH_3)_3Er]SO_4 wasprepared in 2L of solution13. When AgNO3 is added to a solution ofCo(NH3)5Cl3, the precipitate of AgCl showstwo ionizable chloride ions. This means :1) Two chlorine atoms satisfy primary valencyand one secondary valency11. of mixture X + excess AgNO_3 \rightarrow Y1 L of mixture X + excess BaCl_2 \rightarrow ZNumber of moles Y and Z are1) 0.03, 0.02 2) 0.01, 0.023) 0.02, 0.01 4) 0.02, 0.0218. Assertion : [Ti(H_2O)_k]^{3+} is colourled while[Sc(H_2O)_k]^{3+} because no d-electron is present1) If both assertion and reason are true andreason is the correct explanation of assertion.3) If assertion and reason are false.1) [Co(NH_3)_3 (H_2O)_2]Cl_22) [Co(NH_3)_3 (H_2O)_2]Cl_14) [Co(NH_3)_3 (H_2O)_2]Cl_14) [Co(NH_3)_3 (H_2O)_2]Cl_14) [Co(NH_3)_3 (H_2O)_2]Cl_14) [Co(NH_3)_3 (H_2O)_2]Cl_14) [Co(NH_3)_3 (H_2O)_2]Cl_3$	12. For the square planar complex [M(1) (2) (3) (4)]	3) The colour is because of charge transfer
and 0.02 mole of $[Co(NH_3)_Br]SO_4$ was prepared in 2L of solution 1L of mixture X + excess AgNO ₃ \rightarrow Y 1L of mixture X + excess AgNO ₃ \rightarrow Y 1L of mixture X + excess BaCl ₂ \rightarrow Z Number of moles Y and Z are 1) 0.03, 0.02 2) 0.01, 0.02 3) 0.02, 0.01 4) 0.02, 0.02 3) 0.02, 0.01 4) 0.02, 0.02 3) 0.02, 0.01 4) 0.02, 0.02 18. Assertion : $[Ti(H_2O)_6]^{3+}$ is coloured while $[Sc(H_2O)_6]^{3+}$ because no d-electron is present 1) If both assertion and reason are true and reason is the correct explanation of assertion. 2) If both assertion and reason are true but reason is not the correct explanation of assertion. 3) If assertion is true but reason is false. 4) If both assertion and reason are false. 1) [CoC(NH_3)_3 (H_2O)_2]Cl_2 2) [Co(NH_3)_3 (H_2O)_2]Cl_3 4) [Co(NH_3)_3 (H_2O)_2]Cl_3 4) [Co(NH_3)_3 (H_2O)_2]Cl_3 4) [Co(NH_3)_3 (H_2O)_2]Cl_3 4) [Co(NH_3)_3 (H_2O)_3]Cl_3 5) [Co(NH_3)_3 (H_2O	(where, M =central metal ; a, b, c and d are	
 geometrical isometrs are 1) 1 2) 2 3) 3 4) 4 13. When AgNO3 is added to a solution of Co(NH3)5Cl3, the precipitate of AgCl shows two ionizable chloride ions. This means: 1) Two chlorine atoms satisfy primary valency 2) One chlorine atoms satisfy primary as well as secondary valency 3) Three chlorine atoms satisfy secondary valency 4) Three chlorine atoms satisfy secondary valency 14. The hypothetical complex Chlorodiaquatriamminecobalt (III) chloride can be represented as 1) [CoCl(NH3)3 (H2O)2]Cl2 2) [Co(NH3)3 (H2O)2]Cl3 14. The hypothetical complex Chlorodiaquatriamminecobalt (III) chloride can be represented as 1) [CoCl(NH3)3 (H2O)2]Cl2 2) [Co(NH3)3 (H2O)2]Cl3 	monodentate ligands) the number of possible	
 1) T 2) 2 3) 3 4) 4 13. When AgNO3 is added to a solution of Co(NH3)5Cl3, the precipitate of AgCl shows two ionizable chloride ions. This means: Two chlorine atoms satisfy primary valency and one secondary valency One chlorine atom satisfies primary as well as secondary valency One chlorine atoms satisfy secondary valency Three chlorine atoms satisfy secondary valency The hypothetical complex Chlorodiaquatriamminecobalt (III) chloride can be represented as [CoC(NH3)3 (H2O)2]Cl2 [Co(NH3)3 (H2O)2]Cl] [Co(NH3)3 (H2O)3]Cl3 In the function of the correct explanation of assertion. If both assertion and reason are false. Assertion : After spiliting of d-orbitals during complex formation, the orbitals form two sets of orbitals t_{2g} and eg octahedral field. Reason : Splitting of d-orbitals occurs only in the set of the set	geometrical isomers are	and 0.02 mole of [Co(NH ₃) ₅ Br]SO ₄ was
 1 L of mixture X + excess BaCl₂ → Z Number of moles Y and Z are 1) Two chlorine atoms satisfy primary valency 2) One chlorine atom satisfies primary as well as secondary valency 3) Three chlorine atoms satisfy secondary valency 4) Three chlorine atoms satisfy secondary valency 14. The hypothetical complex Chlorodiaquatriamminecobalt (III) chloride can be represented as 1) [CoCl(NH₃)₃ (H₂O)₂]Cl₂ 2) [Co(NH₃)₃ (H₂O)₂]Cl₁ 4) [Co(NH₃)₃ (H₂O)₂]Cl₁ 5) [Co(NH₃)₃ (H₂O)₂]Cl₁ 4) [Co(NH₃)₃ (H₂O)₂]Cl₁ 5) [Co(NH₃)₃ (H₂O)₂]Cl₁ 6) [Co(NH₃)₃ (H₂O)₂]Cl₁ 7) [Co(NH₃)₃ (H₂O)₃]Cl₃ 	1) 1 2) 2 3) 3 4) 4	prepared in 2L of solution
 Co(KH3)3CH3, the precipitate of AgCT shows two ionizable chloride ions. This means: 1) Two chlorine atoms satisfy primary valency 2) One chlorine atom satisfies primary as well as secondary valency 3) Three chlorine atoms satisfy secondary valency 4) Three chlorine atoms satisfy secondary valency 14. The hypothetical complex Chlorodiaquatriamminecobalt (III) chloride can be represented as 1) [CoCl(NH3)3 (H2O)2]Cl2 2) [Co(NH3)3 (H2O)2]Cl3 3) [Co(NH3)3 (H2O)2]Cl] 4) [Co(NH3)3 (H2O)2]Cl] 4) [Co(NH3)3 (H2O)2]Cl3 Number of moles Y and Z are 10.03, 0.02 2) 0.01, 0.02 3) 0.02, 0.01 4) 0.02, 0.02 Reason : [Ti(H ₂ O) ₆] ³⁺ is colourde while [Sc(H ₂ O) ₆] ³⁺ is colourless. Reason : d-d transition is not possible in [Sc(H ₂ O) ₆] ³⁺ because no d-electron is present 1) If both assertion and reason are true and reason is the correct explanation of assertion. 2) If both assertion and reason are true but reason is false. 4) If both assertion and reason are false. 19. Assertion : After spiliting of d-orbitals during complex formation, the orbitals form two sets of orbitals t _{2g} and e _g octahedral field. Reason : Spiliting of d-orbitals occurs only in the	13. When AgNO ₃ is added to a solution of	1 L of mixture X + excess $AgNO_3 \rightarrow Y$
 two ionizable chloride ions. This means : Two chlorine atoms satisfy primary valency Two chlorine atom satisfies primary as well as secondary valency One chlorine atoms satisfy secondary valency Three chlorine atoms satisfy secondary valency The hypothetical complex Chlorodiaquatriamminecobalt (III) chloride can be represented as CoCl(NH₃)₃ (H₂O)₂]Cl₂ CoCl(NH₃)₃ (H₂O)₂]Cl₃ Co(NH₃)₃ (H₂O)₂]Cl₃ Co(NH₃)₃ (H₂O)₂]Cl₃ Co(NH₃)₃ (H₂O)₂]Cl₃ 	Co(NH3)5Cl3, the precipitate of AgCl shows	1 L of mixture X + excess $BaCl_2 \rightarrow Z$
 1) Two chlorine atoms satisfy primary valency and one secondary valency 2) One chlorine atom satisfies primary as well as secondary valency 3) Three chlorine atoms satisfy secondary valency 4) Three chlorine atoms satisfy secondary valency 14. The hypothetical complex Chlorodiaquatriamminecobalt (III) chloride can be represented as [Co(NH₃)₃ (H₂O)₂]Cl₂ [Co(NH₃)₃ (H₂O)₂]Cl₃ 19. Two chlorine atoms (H₂O)₆ (H₂O)₆ (H₂O)₆)³⁺ is colourless. Reason : d-d transition is not possible in [Sc(H₂O)₆]³⁺ because no d-electron is present If both assertion and reason are true and reason is the correct explanation of assertion. If both assertion and reason are true but reason is false. If both assertion and reason are false. If both assertion is fully chloride can be represented as If co(NH₃)₃ (H₂O)₂Cl₃ Assertion : After spiliting of d-orbitals during complex formation, the orbitals form two sets of orbitals t₂₈ and e₈ octahedral field. Reason : Splitting of d-orbitals occurs only in the 	two ionizable chloride ions. This means :	Number of moles Y and Z are
 and one secondary valency 2) One chlorine atom satisfies primary as well as secondary valency 3) Three chlorine atoms satisfy secondary valency 4) Three chlorine atoms satisfy secondary valency 14. The hypothetical complex Chlorodiaquatriamminecobalt (III) chloride can be represented as 1) [CoCl(NH₃)₃ (H₂O)₂]Cl₂ 2) [Co(NH₃)₃ (H₂O)₂]Cl₃ 3) 0.02, 0.01 4) 0.02, 0.02 18. Assertion : [Ti(H₂O)₆]³⁺ is coloured while [Sc(H₂O)₆]³⁺ is colourless. Reason : d-d transition is not possible in [Sc(H₂O)₆]³⁺ because no d-electron is present 1) If both assertion and reason are true and reason is the correct explanation of assertion. 2) If both assertion and reason are true but reason is not the correct explanation of assertion. 3) If assertion is true but reason is false. 4) If both assertion and reason are false. 19. Assertion : After spiliting of d-orbitals during complex formation, the orbitals form two sets of orbitals t_{2g} and e_g octahedral field. Reason : Splitting of d-orbitals occurs only in the 	1) Two chlorine atoms satisfy primary valency	
 2) One chlorine atom satisfies primary as well as secondary valency 3) Three chlorine atoms satisfy secondary valency 4) Three chlorine atoms satisfy secondary valency 14. The hypothetical complex Chlorodiaquatriamminecobalt (III) chloride can be represented as [CoCl(NH₃)₃ (H₂O)₂]Cl₂ [Co(NH₃)₃ (H₂O)₂]Cl₃ 19. Assertion : After spilitting of d-orbitals during complex formation, the orbitals form two sets of orbitals t_{2g} and e_g octahedral field. Reason : Splitting of d-orbitals occurs only in the 	and one secondary valency	
 secondary valency 3) Three chlorine atoms satisfy secondary valency 4) Three chlorine atoms satisfy secondary valency 14. The hypothetical complex Chlorodiaquatriamminecobalt (III) chloride can be represented as [CoCl(NH₃)₃ (H₂O)₂]Cl₂ [Co(NH₃)₃ (H₂O)₂]Cl₂ [Co(NH₃)₃ (H₂O)₂]Cl₃ [Co(NH₃)₃ (H₂O)₂]Cl₃ Reason : d-d transition is not possible in [Sc(H₂O)₆]³⁺ because no d-electron is present If both assertion and reason are true and reason is the correct explanation of assertion. If both assertion and reason are true but reason is not the correct explanation of assertion. If assertion is true but reason is false. If both assertion and reason are false. 19. Assertion : After spiliting of d-orbitals during complex formation, the orbitals form two sets of orbitals t_{2g} and e_g octahedral field. Reason : Splitting of d-orbitals occurs only in the 	2) One chlorine atom satisfies primary as well as	A DATA DE LA VILLE
 3) Three chlorine atoms satisfy secondary valency 4) Three chlorine atoms satisfy secondary valency 14. The hypothetical complex Chlorodiaquatriamminecobalt (III) chloride can be represented as [CoCl(NH₃)₃ (H₂O)₂]Cl₂ [Co(NH₃)₃ (H₂O)₂]Cl₂ [Co(NH₃)₃ (H₂O)₂]Cl₃ (Sc(H₂O)₆]³⁺ because no d-electron is present If both assertion and reason are true and reason is the correct explanation of assertion. If both assertion and reason are true but reason is not the correct explanation of assertion. If both assertion is true but reason is false. If both assertion and reason are false. (Particular in the interval of the int	secondary valency	
 4) Three chlorine atoms satisfy secondary valency 14. The hypothetical complex Chlorodiaquatriamminecobalt (III) chloride can be represented as [CoCl(NH₃)₃ (H₂O)₂]Cl₂ [Co(NH₃)₃ (H₂O)₂]Cl₃ 1) If both assertion and reason are true and reason is the correct explanation of assertion. 2) If both assertion and reason are true but reason is not the correct explanation of assertion. 3) If assertion is true but reason is false. 4) [Co(NH₃)₃ (H₂O)₂]Cl₃ 4) [Co(NH₃)₃ (H₂O)₃]Cl₃ 	3) Three chlorine atoms satisfy secondary	
 4) Three chlorine atoms satisfy secondary valency 14. The hypothetical complex Chlorodiaquatriamminecobalt (III) chloride can be represented as [CoCl(NH3)3 (H2O)2]Cl2 [Co(NH3)3 (H2O)2]Cl3 4) [Co(NH3)3 (H2O)2]Cl] (Co(NH3)3 (H2O)2]Cl] (Co(NH3)3 (H2O)2]Cl] (Co(NH3)3 (H2O)2]Cl] 4) [Co(NH3)3 (H2O)3]Cl3 	valency	
 14. The hypothetical complex Chlorodiaquatriamminecobalt (III) chloride can be represented as [CoCl(NH₃)₃ (H₂O)₂]Cl₂ [Co(NH₃)₃ (H₂O)₂]Cl₃ 10. [Co(NH₃)₃ (H₂O)₂]Cl₃ 11. [Co(NH₃)₃ (H₂O)₂]Cl₃ 12. [Co(NH₃)₃ (H₂O)₂]Cl₂ 13. [Co(NH₃)₃ (H₂O)₂]Cl₃ 14. The hypothetical complex formation and reason are true but reason is not the correct explanation of assertion. 14. The hypothetical complex formation is true but reason are true but reason is not the correct explanation of assertion. 15. Assertion : After spilitting of d-orbitals during complex formation, the orbitals form two sets of orbitals t_{2g} and e_g octahedral field. Reason : Splitting of d-orbitals occurs only in the 	4) Three chlorine atoms satisfy secondary	
 14. The hypothetical complex Chlorodiaquatriamminecobalt (III) chloride can be represented as [CoCl(NH₃)₃ (H₂O)₂]Cl₂ [Co(NH₃)₃ (H₂O)₂]Cl₃ (Co(NH₃)₃ (H₂O)₂]Cl₃ 14. The hypothetical complex complex complex hypothetical complex formation of assertion. (A) If assertion is true but reason is false. (A) If both assertion and reason are false. (A) If both assertion and reason are false. (A) If both assertion is true but reason is false. (A) If both assertion and reason are false. (A) If both assertion is true but reason is false. (A) If both assertion and reason are false. (A) If both assertion is true but reason is false. (A) If both assertion and reason are false. (A) If both assertion and reason are false. (A) If both assertion is true but reason is false. (A) If both assertion and reason are false. (A) If both assertion is true but reason is false. (A) If both assertion and reason are false. (A) If both assertion is true but reason is false. (A) If both assertion and reason are false. (A) If both assertion is true but reason is false. (A) If both assertion and reason are false. (A) If both assertion is true but reason is false. (A) If both assertion is true but reason is false. (A) If both assertion and reason are false. (A) If both assertion is true but reason is false. (A) If both assertion is true but reason is false. (A) If both assertion is true but reason is false. (A) If both assertion is true but reason is false. (A) If both assertion is true but reason is false. (A) If both assertion is true but reason is false. (A) If both assertion is true but reason is false. (A) If both assertion is true but reason is false. (A) If both assertion is true but reason is false. (A) If both assertion is true but reason is false. (A) If both assertion is true but reason is false. (A) If both assertion is true but reason is false. (A) If both assertion is true but reason is false. (A) If both assertion is true but reason is false. (A) If	valency	-
 Chlorodiaquatriamminecobalt (111) chloride can be represented as 1) [CoCl(NH₃)₃ (H₂O)₂]Cl₂ 2) [Co(NH₃)₃ (H₂O)₂]Cl₃] 3) [Co(NH₃)₃ (H₂O)₂]Cl] 4) [Co(NH₃)₃ (H₂O)₃]Cl₃ Co(NH₃)₃ (H₂O)₃]Cl₃ 	14. The hypothetical complex	
 can be represented as 1) [CoCl(NH₃)₃ (H₂O)₂]Cl₂ 2) [Co(NH₃)₃ (H₂O)]Cl₃] 3) [Co(NH₃)₃ (H₂O)₂]Cl] 4) [Co(NH₃)₃ (H₂O)₃]Cl₃ 4) If both assertion and reason are false. 4) If both assertion and reason are false. 19. Assertion : After spilitting of d-orbitals during complex formation, the orbitals form two sets of orbitals t_{2g} and e_g octahedral field. Reason : Splitting of d-orbitals occurs only in the 	Chlorodiaquatriamminecobalt (III) chloride	-
 1) [CoCl(NH₃)₃ (H₂O)₂]Cl₂ 2) [Co(NH₃)₃ (H₂O)]Cl₃] 3) [Co(NH₃)₃ (H₂O)₂]Cl] 4) [Co(NH₃)₃ (H₂O)₃]Cl₃ 19. Assertion : After spilitting of d-orbitals during complex formation, the orbitals form two sets of orbitals t_{2g} and e_g octahedral field. Reason : Splitting of d-orbitals occurs only in the 	can be represented as	
 2) [Co(NH₃)₃ (H₂O)]Cl₃] 3) [Co(NH₃)₃ (H₂O)₂]Cl] 4) [Co(NH₃)₃ (H₂O)₃]Cl₃ Co(NH₃)₃ (H₂O)₃]Cl₃ Co(NH₃)₃ (H₂O)₃]Cl₃ Co(NH₃)₃ (H₂O)₃]Cl₃ Co(NH₃)₃ (H₂O)₃]Cl₃ Co(NH₃)₃ (H₂O)₃]Cl₃ 	1) [CoCl(NH ₃) ₃ (H ₂ O) ₂]Cl ₂	
3) $[Co(NH_3)_3 (H_2O)_2]Cl]$ orbitals t_{2g} and e_g octahedral field.4) $[Co(NH_3)_3 (H_2O)_3]Cl_3$ Reason : Splitting of d-orbitals occurs only in the	2) [Co(NH ₃) ₃ (H ₂ O)]Cl ₃]	
4) [Co(NH ₃) ₃ (H ₂ O) ₃]Cl ₃ Reason : Splitting of d-orbitals occurs only in the	3) [Co(NH ₃) ₃ (H ₂ O) ₂]Cl]	
1 LANCH SUTHY TELL BYATHS SUCH AS UN	/ L	case of strong field ligands such as CN ⁻

NE	ET		Co – Ordination Compounds
	1) If both assertion and reason are true and	25.	Cr ⁺³ in aquous medium form green coloured
	reason is the correct explanation of assertion.		complex with NH ₃ ligand. How many ligand
	2) If both assertion and reason are true but		associated
	reason is not the correct explanation of assertion.		1) 3 2) 4 3) 5 4) 6
	3) If assertion is true but reason is false.	26.	Which one has largest number of isomers ?
	4) If both assertion and reason are false.		1) $[Co(en)_2Cl_2]^+$
20.	CuSO ₄ . 5H ₂ O is blue in colour while CuSO ₄ is		2) $[Co(NH_3)5Cl]^{2+}$
	colourless, because		3) $[Ir(PhR_3)_2H(CO)]^{2+}$
	1) H_2O is a strong field ligand than SO_4^{2-}		
	2) SO_4^2 is a strong field ligand		4) $[Ru(NH_3)_4Cl_2]^+$
	3) CuSO ₄ cannot form the complex	27.	The correct order of magnetic moments (only
	4) No d-d transition is possible in CuSO ₄		spin value in BM) among is :
21.	Assertion (A) : Complexes of MX_6 and MX_5L		1) $[Fe(CN)_6]^{4-} > [CoCl_4]^{2-} > [MnCl_4]^{2-}$
	type (X and L are unidentate) do not show geometrical isomerism.		2) $[MnCl_4]^{2-} > [Fe(CN)_6]^{4-} > [CoCl_4]^{2-}$
	Reason (R) : Geometrical isomerism is not		3) $[Fe(CN)_6]^{4-} > [MnCl_4]^{2-} > [CoCl_4]^{2-}$
	shown by complexes of coordinate number –6		4) $[MnCl_4]^{2-} > [CoCl_4]^{2-} > [Fe(CN)_6]^{4-}$
	1) If both assertion and reason are true and	28.	The oxidation state of Cr in [Cr(NH ₃) ₄ Cl ₂] ⁺
	reason is the correct explanation of assertion.		is:
	2) If both assertion and reason are true but		1) 0 2) +1 3) +2 4) +3
	reason is not the correct explanation of assertion.	29.	Which of the following will show optical
	3) If assertion is true but reason is false.4) If both assertion and reason are false.		isomerism?
22	Trien is		1) $[Cu(NH_3)_4]^{2+}$ 2) $[ZnCl_4]^{2-}$
	1) Hexa dentate, Mono anionic		3) $[Cr(C_2O_4)_3]^{3-}$ 4) $[Co(CN)_6]^{3-}$
	2) tetradentate, neutral	• •	
	3) tetradentate, dianion	30.	The value of 'spin only' magnetic moment for
	4) Mono dentate, anion		one of the following configurations is 2.84 BM.
23.	Which of the following is diamagnetic complex		The correct one is:
	1) $[Co(OX)_3]^{3-}$, $[Fe(CN)_6]^{4-}$ 2) $[Co(Ox)_3]^{3-}$, $[FeF_6]^{3-}$		1) d ⁴ (in strong field ligand)
	3) $[Fe(Ox)_3]^{3-}$, $[FeF_6]^{3-}$ 4) $[Fe(CN)_6]^{3-}$, $[CoF_6]^{3-}$		2) d^4 (in weak field ligand)
• 4			3) d^3 (in weak as well as strong field ligand)
24.	Which of the following can be reduce easily		4) d ⁵ (in strong field ligand)
	1) $V(CO)_6$ 2) $Mo(CO)_6$		
	3) $\left[\operatorname{Co}(\operatorname{CO})_{4}\right]^{-}$ 4) Fe(CO) ₅		

NEET	Co – Ordination Compounds		
31. Which one of the following complexes would	38. In which of the following octahedral complexes		
exhibit the lowest value of paramagnetic	of Co (at no. 27), will the magnitude of Δ_0 be		
behaviour?	the highest?		
1) $[Co(CN)_6]^{3-}$ 2) $[Fe(CN)_6]^{3-}$	1) $[Co(C_2O_4)_3]^{3-}$ 2) $[Co(H_2O)_6]^{3+}$		
3) $[Mn(CN)_6]^{3-}$ 4) $[Cr(CN)_6]^{3-}$	3) $[Co(NH_3)_6]^{3+}$ 4) $[Co(CN)_6]^{3-}$		
32. The IUPAC name for the complex $[Co(NO_2)]$	39. Which of the following has an optical isomer?		
(NH ₃) ₅]Cl ₂ is :	1) [Co (en) (NH ₃) ₂] ²⁺ 2) [Co(H ₂ O) ₄ (en)] ³⁺		
1) Nitrito-N-pentaamminecobalt(III) chloride	3) [Co (en) ₂ (NH ₃) ₂] ³⁺ 4) [Co (NH ₃) ₃ Cl] ⁺		
2) Nitrito-N-pentaamminecobalt(II) chloride	40. Which of the following pairs represents linkage		
3) Pentaamminenitrito-N-cobalt(II) chloride	isomers ?		
4) Pentaamminenitrito-N-cobalt(III) chloride	1) [Pd(PPh ₃) ₂ (NCS) ₂] and [Pd(PPh ₃) ₂ (SCN) ₂]		
33. In Fe(CO) ₅ , the Fe – C bond possesses :	2) [Co(NH ₃) ₅ NO ₃] SO ₄ and [Co (NH ₃) ₅		
1) π -character only 2) both σ and π characters	(SO ₄)] NO ₃		
3) ionic character only 4) σ -character only	3) [PtCl ₂ (NH ₃) ₄ Br ₂ and [Pt Br ₂ (NH ₃) ₄] Cl ₂		
34. How many EDTA (ethylenediaminetetraacetic	4) [Cu (NH ₃) ₄] [Pt Cl ₄] and [Pt (NH ₃) ₄ [CuCl ₄]		
acid) molecules are required to make an	41. Which one of the following has an optical		
octahedral complex with a Ca^{2+} ion?	isomer?		
1) Six 2) Three 3) One 4) Two	1) $[Zn(en)(NH_3)_2]^{2+}$ 2) $[Co(en)_3]^{3+}$		
35. The 'spin only' magnetic moment (in units of Bohr magneton, μ_B) of Ni ²⁺ in aqueous	3) $[Co(H_2O)_4(en)]^{3+}$ 4) $[Zn(en)_2]^{2+}$		
	AGAUCINT		
solution would be (atomic number $Ni = 28$)	(en = ethylenediamine)		
1) 2.84 2) 4.80 3) 0 4) 1.73	42. Which of the following facts about the complex $C_r(NH_2) + C_1 = \frac{1}{2} \frac{1}{2}$		
36. Which one of the following has a square planar	[Cr(NH ₃) ₆]Cl ₃ is wrong ?		
geometry?	1) The complex involves d^2sp^3 hybridisation and		
1) $[NiCl_4]^{2-}$ 2) $[PtCl_4]^{2-}$	is octahedral in shape.		
3) [CoCl ₄] ²⁻ 4) [FeCl ₄] ²⁻	2) The complex is paramagnetic.3) The complex is an outer orbital complex.		
(At. no. Co = 27, Ni = 28, Fe = 26, Pt = 78)	3) The complex is an outer orbital complex.4) The complex gives white precipitate with		
37. The coordination number and the oxidation	silver nitrate solution.		
state of the element 'E' in the complex	43. The magnetic moment (spin only) of [NiCl ₄] ²⁻		
$[E(en)_2(C_2O_4)]$ NO ₂ (when 'en' is ethylene			
diamine) are, respectively,	is: 1) 1.82 BM 2) 5.46 BM		
1) 4 and 2 2) 4 and 3 3) 6 and 3 4) 6 and 2	1) 1.82 BM 2) 5.46 BM 3) 2.82 BM 4) 1.41 BM		

NEET	Co – Ordination Compounds		
44. Which among the following will be named as	50. On treatment of 100 mL of 0.1 M solution of		
dibromidobis (ethylene diamine) chromium	CoCl ₃ .6H ₂ O with excess AgNO ₃ ; 1.2×10^{22} ions		
(III) bromide?	are precipitated. The complex is :		
1) [Cr (en) ₃]Br ₃ 2) [Cr(en) ₂ Br ₂]Br	1) $[Co(H_2O)_3Cl_3].3H_2O$		
3) [Cr(en)Br ₄] ⁻ 4) [Cr(en)Br ₂]Br	2) $[Co(H_2O)_6]Cl_3$		
45. Which of the following complex species is not	3) $[Co(H_2O)_5Cl]Cl_2.H_2O$		
expected to exhibit optical isomerism ?	4) $[Co(H_2O)_4Cl_2]Cl_2H_2O$		
1) [Co(en) ₃] ³⁺ 2) [Co(en) ₂ Cl ₂] ⁺	51. Consider the following reaction and		
3) [Co(NH ₃) ₃ Cl ₃] 4) [Co(en) (NH ₃) ₂ Cl ₂] ⁺	statements: $Co(NH_3)_4Br_2]^+ + Br^- \rightarrow [Co(NH_3)_3Br_3] + NH_3$		
46. The octahedral complex of a metal ion M^{3+}	(I) Two isomers are produced if the reactant		
with four monodentate ligands L_1 , L_2 , L_3 and	complex ion is a cis-isomer.		
L ₄ absorb wavelengths in the region of red,	(II) Two isomers are produced if the reactant		
green, yellow and blue, respectively. The	complex ion is a <i>tran</i> -isomer.		
increasing order of ligand strength of the four	(III) Only one isomer is produced if the reactant		
ligands is :	complex ion is a <i>trans</i> -isomer.		
1) $L_4 < L_3 < L_2 < L_{12}$) $L_1 < L_3 < L_2 < L_4$	(IV) Only one isomer is produced if the reactant		
3) $L_3 < L_2 < L_4 < L_1$ 4) $L_1 < L_2 < L_4 < L_3$	complex ion is a <i>cis</i> -isomer.		
47. The number of geometric isomers that can exist	The correct statements are:		
for square planar [Pt (Cl) (py) (NH ₃)	1) (III) and (IV) 2) (II) and (IV) 3) (I) and (II) 4) (I) and (III)		
$(NH_2OH)]^+$ is (py = pyridine) :	52. The oxidation states of Cr in $[Cr(H_2O)_6]Cl_3$,		
$\begin{array}{c} (112011) \\ 1) 2 \\ 2) 3 \\ 3) 4 \\ 4) 6 \end{array}$	$[Cr(C_6H_6)_2]$, and $K_2[Cr(CN)_2(O)_2(O_2)(NH_3)]$		
48. The pair having the same magnetic moment is :	respectively are :		
[At. No.: Cr = 24, Mn = 25, Fe = 26, Co = 27]	1) +3, 0, and +6 2) +3, 0, and +4		
1) [Cr(H ₂ O) ₆] ²⁺ and [Fe(H ₂ O) ₆] ²⁺	3) +3, +4, and +6 4) +3, +2, and +4		
2) $[Mn(H_2O)_6]^{2+}$ and $[Cr(H_2O)_6]^{2+}$	53. Homoleptic octahedral complexes of a metal		
	ion ' M^{3+} ' with three monodentate ligands L_1 , L_2		
3) $[CoCl_4]^{2-}$ and $[Fe(H_2O)_6]^{2+}$	and L ₃ absorb wavelengths in the region of		
4) $[Cr(H_2O)_6]^{2+}$ and $[CoCl_4]^{2-}$	green, blue and red respectively. The increasing		
49. Which one of the following complexes shows	order of the ligand strength is :		
optical isomerism ? (en = ethylenediamine)	1) $L_1 < L_2 < L_3$ 2) $L_3 < L_2 < L_1$		
1) <i>cis</i> [Co(en) ₂ Cl ₂]Cl 2) <i>trans</i> [Co(en) ₂ Cl ₂]Cl	2) $L_3 < L_2 < L_1$ 3) $L_2 < L_1 < L_3$		
3) [Co(NH ₃) ₄ Cl ₂]Cl 4) [Co(NH ₃) ₃ Cl ₃]	$\begin{array}{c} 3 \\ 3 \\ 4 \\ 1 \\ 1 \\ 4 \\ 1 \\ 1 \\ 4 \\ 1 \\ 1 \\ 1$		
31 E- TECH ACADEM	Y KURLA, MUMBAI, MAHARASHTRA -70 Ph: 9833905914		

NEET	Co – Ordination Compounds
54. The complex that has highest crystal field	59. The coordination number of Th in
splitting energy (Δ), is :	\mathbf{K}_{4} [Th(C ₂ O ₄) ₄ (OH ₂) ₂] is : (C ₂ O ₄ ²⁻ = Oxalato)
1) $K_2[COCl_4]$ 2) $[CO(NH_3)_5(H_2O)]Cl_3$	1) 14 2) 10 3) 6 4) 8
3) [CO(NH ₃) ₅ Cl]Cl ₂ 4) K ₃ [CO(CN) ₆]	60. The number of bridging CO ligand(s) and Co-
55. Two complexes $[Cr(H_2O)_6]Cl_3$ (A) and	Co bond (s) in Co ₂ (CO) ₈ , respetively are :
[Cr(NH ₃) ₆]Cl ₃ (B) are violet and yellow	1) 4 and 0 2) 0 and 2
coloured respectively. The incorrect statement	3) 2 and 1 4) 2 and 0
regarding them is :	61. Match the metals (column I) with the
1) Δ_0 value for (A) is less than that of (B).	coordination compound(s)/ emzyme (s)
2) both absorb energies corresponding to their	(column II):
complementary colors.	(column I) (column II)
3) Δ_0 values of (A) and (B) are calculated from	Metal Coordination compound(s)
the energies of violet and yellow light,	/enzyme(s)
respectively.	(A) Co (i) Wilkinson catalyst
4) both are paramagnetic with three unpaired	(B) Zn (ii) ChlorophyII
electrons.	(C) Rh (iii) Vitamin B_{12}
56. The difference in the number of unpaired	(D) Mg (iv) Carbonic anhydrase
electrons of a metal ion in its high-spin and	1) (A)-(i);(B)-(ii);(C)-(iii);(D)-(iv)
low-spin octahedral complexes is two. The	2) (A)-(iv);(B)-(iii);(C)-(i);(D)-(ii)
metal ion is:	3) (A)-(iii);(B)-(iv);(C)-(i);(D)-(ii)
1) Co^{2+} 2) Fe^{2+} 3) Mn^{2+} 4) Ni^{2+}	4) (A)-(ii);(B)-(i);(C)-(iv);(D)-(iii)
57. A reaction of cobalt(III) chloride and	62. The magnetic moment of an octahedral
ethylenediamine in a 1 : 2 mole ratio generates	homoleptic Mn(II) complex is 5.9 BM. The
two isomeric products A (violet coloured) and	suitable ligand for this complex is:
B(green coloured). A can show optical activity,	1) Ethylenediamine 2) CN^{-}
but, B is optically inactive. What type of	3) NCS ⁻ 4) CO
isomers does A and B represent?	63. $Mn_2(CO)_{10}$ is an organometallic compound due
1) Ionisation isomers	to the presence of :
2) Linkage isomer	1) $Mn - C$ bond 2) $C - O$ bond
3) Coordination isomers	3) $Mn - O$ bond 4) $Mn - Mn$ bond
4) Geometrical isomers	64. The metal d-orbitals that are directly facing the
58. The total number of isomers for a square planar	ligands in K ₃ [Co(CN) ₆] are :
complex [M(F) (Cl) (SCN) (NO ₂)] is :	1) d_{xz} , d_{yz} and d_{z^2} 2) d_{xy} and $d_{x^2-y^2}$
1) 16 2) 4 3) 12 4) 8	3) d_{xy} , d_{xz} and d_{yz} 4) $d_{x^2-y^2}$ and d_{z^2}

NEET

LEVEL-2 KEY									
1	2	3	4	5	6	7	8	9	10
2	1	3	1	2	3	1	2	2	1
11	12	13	14	15	16	17	18	19	20
3	3	2	1	2	4	3	1	3	4
21	22	23	24	25	26	27	28	29	30
3	2	1	1	4	1	4	4	3	1
31	32	33	34	35	36	37	38	39	40
1	4	2	3	1	2	3	4	3	1
41	42	43	44	45	46	47	48	49	50
2	3	3	2	3	2	2	1	1	3
51	52	53	54	55	56	57	58	59	60
4	1	4	4	3	1	4	3	2	3

E-TECH ACADEMY

Co – Ordination Compounds

NE	ET		Co – Ordination Compounds
LE	EVEL-3(PREVIOUS YEARQUESTIONS)	6.	In which of the following coordination entities
1.	Copper sulphate dissolves in excess of KCN to		the magnitude of Δ_0 (CFSE in octahedral field)
	give [AIPMT-2006]		will be maximum? [AIPMT-2008]
	1) $Cu(CN)_2$ 2) $CuCN$		1) $[Co(CN)_6]^{3-}$ 2) $[Co(C_2O_4)_3]^{3-}$
	3) $[Cu(CN)_4]^{3-}$ 4) $[Cu(CN)_4]^{2-}$		3) $[Co(H_2O)_6]^{3+}$ 4) $[Co(NH_3)_6]^{3+}$
2.	[Co(NH ₃) ₄ (NO ₂) ₂]Cl exhibits [AIPMT-2006]	7.	Which of the following complex ions is
	1) linkage isomerism, geometrical isomerism and		expected to absorb visible light? [AIPMT-2009]
	optical isomerism		1) $[Zn(NH_3)_6]^{2+}$ 2) $[Sc(H_2O)_3(NH_3)_3]^{3+}$
	2) linkage isomerism, ionization isomerism and		3) $[Ti(en)_2(NH_3)_2]^{4+}$ 4) $[Cr(NH_3)_6]^{3+}$
	optical isomerism	8.	Out of TiF_6^{2-} , CoF_6^{3-} , Cu_2Cl_2 and $NiCl_4^{2-}$
	3) linkage isomerism, ionization isomerism and		colourless species are : [AIPMT-2009]
	geometrical isomerism		1) CoFe ³ - and NiCl ₄ ²⁻
	4) ionization isomerism, geometrical isomerism		2) TiF_{6}^{2-} and CoFe^{2-}
	and optical isomerism		3) Cu_2Cl_2 and $NiCl_4^{2-}$
3.	Which of the following will give a pair of		4) $\operatorname{TiF}_{6}^{2-}$ and $\operatorname{Cu}_{2}\operatorname{Cl}_{2}$
	enantiomers [AIPMT-2007]	9.	Which of the following does not show optical
	1) [Cr(NH ₃) ₆][Co(CN) ₆]		isomerism? [AIPMT-2009]
	2) $[Co(en)_2Cl_2]Cl$		1) $[Co(en)_3]^{3+}$ (2) $[Co(en)_2Cl_2]^+$
	$3)[Pt(NH_3)_4][PtCl_6]$	-	3) $[Co(NH_3)_3Cl_3]^0$ 4) $[Co(en)Cl_2(NH_3)_2]^+$
	4) $[Co(NH_3)_4Cl_2] NO_2$	10.	. Which one of the following complexes is not
4.	The d electron configurations of Cr^{2+} , Mn^{2+} ,		expected to exhibit isomerism:- [AIPMT-2009]
	Fe^{2+} and Ni^2+ are $3d^4$, $3d^5$, $3d^6$ and $3d^8$	ACI	1) [Pt (NH ₃) ₂ Cl ₂] 2) [NiCl ₄] ²⁻
	respectively which one of the following aqua		3) $[Ni (en)_3]^{2+}$ 4) $[Ni(NH_3)_4(H_2O)_2]^{2+}$
	complexes will exhibit the minimum	11.	. Which of the following complex ion is not
	paramagnetic behaviour [AIPMT-2007]		expected to absorb visible light? [AIPMT-2010]
	1) $[Fe(H_2O)_6]^{2+}$ 2) $[Ni(H_2O)_6]^{2+}$		1) $[Ni(H_2O)_6]^{2+}$ 2) $[Ni(CN)_4]^{2-}$
	3) $[Cr(H_2O)_6]^{2+}$ 4) $[Mn(H_2O)_6]^2$		3) $[Cr(NH_3)_6]^{3+}$ 4) $[Fe(H_2O)_6]^{2+}$
5.	Which of the following complexes exhibits the	12	The existence of two different coloured
	highest paramagnetic behaviour ? Where gly =		complexes with the composition of
	glycine, en = ethylenediamine and		$[Co(NH_3)_4Cl_2]^+$ is due to:- [AIPMT-2010]
	bpy=bipyridyl moities) [AIPMT-2008]		1) Ionization isomerism
	1) $[Co(OX)_2 (H_2O)_2]^{-1}$		2) Linkage isomerism
	2) [Ti(NH ₃) ₆] ³ +		3) Geometrical isomerism
	3) $[V (gly)_2(OH)_2(NH_3)_2]^+$		4) Coordination isomerism
	4) [Fe(en) (bpy) $(NH_3)_2$] ²⁺		
34	F- TECH ACADEM		RLA, MUMBAI, MAHARASHTRA -70 Ph: 9833905914
13. Crystal field stabilization energy for high spin	20. Red precipitate is		
---	---		
d4 octahedral complex is :- [AIPMT-2010]	solution of dimet		
1) -0.6 Δ_0 2) -1.8 Δ_0	ammoniacal Ni(II).		
3) -1.6 Δ_0 + P 4) -1.2 Δ_0	statements is not tru		
14. Of the following complex ions, which is			
diamagnetic in nature? [Pre-AIPMT-2011]	demethylglyoxime = $H_3 C$ $H_3 C$		
1) $[NiCl_4]^{2}$ 2) $[Ni(CN)_4]^{2}$			
3) $[CuCl_4]^{2-}$ 4) $[CoF_6]^{3-}$	1) Red complex has		
15. The complex $[Co(NH_3)_6][Cr(CN)_6]$ and	2) Dimethylglyoxir		
[Cr(NH ₃) ₆] [Co(CN) ₆] are the examples of	ligand.		
which type of isomerism? [Pre-AIPMT-2011]	3) Red complex has		
1) Linkage isomerism	4) Complex has sym		
2) Ionization isomerism	21. Low spin complex of		
3) Coordination isomerism	field will have the		
4) Geometrical isomerism	Crystal field splitti		
16. The complex [Pt(Py)(NH ₃)BrCl] will have how	field, P = Electron p		
many geometrical isomers ? [Pre-AIPMT-2011]			
1) 3 2) 4 3) 0 4) 2	1) $\frac{-2}{5}\Delta_0 + 2P$		
17. Which of the following carbonyls will have the			
strongest C-O bond? [AIPMT Mains 2011]	3) $\frac{-12}{5}\Delta_0 + P$		
1) $[Fe(CO)_5]$ 2) $6[Mn(CO)]^+$	5		
3) $[Cr(CO)_6]$ 4) $[V(CO)_6]^-$	22. A magnetic momen		
18. Which of the following complex compounds	by one among the for 1×10^{-1}		
will exhibit highest paramagnetic behaviour :-	1) $[CoCl_6]^{4-}$		
(At. No. Ti = 22, Cr = 24, Co = 27, Zn = 30)	 3) [Ni(CN)₄]²⁻ 23. Which of the follow 		
1) [Zn(NH ₃) ₆] ²⁺ [AIPMT Mains 2011]			
2) $[Ti(NH_3)_6]^{3+}$	as an anticancer age 1) mer-[Co(NH ₃) ₃ Cl		
3) $[Cr(NH_3)_6]^{3+}$	3) cis-K ₂ [PtCl ₂ Br ₂]		
4) $[Co(NH_3)_6]^{3+}$	24. Cobalt (III) chlorid		
19. Which one of the following is an outer orbital			
complex and exhibits paramagnetic behaviour?	complexes with a		
1) $[Cr(NH_3)_6]^{3+}$ [AIPMT Pre. 2012]	following will not with silver nitrate a		
2) $[Co(NH_3)_6]^{3+}$			
3) $[Ni(NH_3)_6]^{2+}$	1) $CoCl_3 \cdot 4NH_3$		
4) $[Zn(NH_3)_6]^{2+}$	3) CoCl ₃ . 6NH3		
35 E- TECH ACADEMY	Y KURLA, MUMBAI, MAHARA		

Co – Ordination Compounds is obtained when ethanol thylglyoxime is added to

. Which of the following ue ? [AIPMT Mains 2012]

a tetrahedral geometry.

me functions as bidentate

a square planar geometry.

- nmetrical H-bonding.
- of d⁶-cation in an octahedral e following energy :- (Δ_0 = ing energy in an octahedral pairing energy)

[AIPMT Mains 2012]

1)
$$\frac{-2}{5}\Delta_0 + 2P$$
 2) $\frac{-2}{5}\Delta_0 + P$

3)
$$\frac{-12}{5}\Delta_0 + P$$
 4) $\frac{-12}{5}\Delta_0 + 3P$

- nt of 1.73 BM will be shown ollowing :[NEET-UG 2013] 2) $[Cu(NH_3)_4]^{2+}$
 - 4) $TiCl_4$
- wing complexes is used to be [AIPMT 2014] ent? $(1_3]_2)$ cis-[PtCl₂(NH₃)₂]
 - 4) Na_2CoCl_4
- de forms several octahedral ammonia. Which of the give test of chloride ions at 25°C? [AIPMT 2015] 2) CoCl₃.5NH₃
 - 4) CoCl₃ . 3NH

NEET			Со	– Ordination Compounds
25. W	which of these statements about [Co(CN) ₆] ³⁻ is	31	The correct increasin	g order of trans-effect of
tr	ue:- [AIPMT 2015]		the following species	is : [NEET-II 2016]
1)	[Co(CN)6] ³⁻ has four unpaired electrons and		1) $Br^{-} > CN^{-} > NH_{3} >$	C_6H_5
W	ill be in a low-spin configuration.		2) $CN^{-} > Br^{-} > C_{6}H_{5}^{-}$	>NH.
2)	[Co(CN)6] ³⁻ has four unpaired electrons and		,	
W	ill be in a high spin configuration.		3) $NH_3 > CN^2 > Br^2 >$	C_6H_5
	[Co(CN)6] ³⁻ has no unpaired electrons and		4) $CN^{-} > C_6H_5^{-} > Br^{-} >$	> NH ₃
	ill be in a high-spin configuration.	32.	Jahn-Teller effect no	ot observed in high spin
	[Co(CN)6] ³⁻ has no unpaired electrons and		complexes of	[NEET-II 2016]
	ill be in a low-spin configuration.		1) d^4 2) d^9 3) d^7 4) d^8
	he name of complex ion, [Fe(CN)6] ³⁻ is :-	33.	An example of a sign	na bonded organometallic
	Tricyanoferrate (III) ion [Re-AIPMT 2015]		compound is :	[NEET(UG) 2017]
	Hexacyanidoferrate (III) ion		1) Grignard's reagent2)) Ferrocene
	Hexacyanoiron (III) ion		3) Cobaltocene 4) Ruthenocene
4) 27. Tl	Hexacyanitoferrate (III) ion	34.	Pick out the correct	statement with respect to
	he hybridization involved in complex Ni(CN) ₄] ²⁻ is(At.No. Ni = 28)	-	[Mn(CN) ₆] ³⁻ :-	[NEET(UG) 2017]
	$d^2 sp^2$ 2) $d^2 sp^3$ [Re-AIPMT 2015]		1) It is sp ³ d ² hybridised	l and tetrahedral
	$dsp^2 \qquad \qquad 4) sp^3$	-0	2) It is d ² sp ³ hybridised	
	he sum of coordination number and oxidation		3) It is dsp ² hybridised	
	umber of the metal M in the complex		4) It is sp^3d^2 hybridised	
	$M(en)_2(C_2O_4)$]Cl [Re-AIPMT 2015]	35.		der for the wavelengths of
-	where en is ethylenediamine) is:		-	ible region the complexes
1)	-		of Co^{3+} is	[NEET(UG) 2017]
29. N	umber of possible isomers for the complex		1) $[Co(H_2O)_6]^{3+}$, $[Co(6)^{3+}, [Co(6)^{3+}, [Co(6$	
[C	$Co(en)_2Cl_2$ Cl will be : (en =		2) $[Co(H_2O)_6]^{3+}$, $[Co(H_2O)_6]^{3+}$, $[Co(H_3)_6]^{3+}$,	
et	hylenediamine) [Re-AIPMT 2015]		4) $[Co(en)_3]^{3+}$, $[Co(NI_3)_6]^{3+}$	
1)	3 2) 4 3) 2 4) 1	36		m shown by the complex
30. W	which of the following has longest C-O bond	500	$[CoCl_2(en)_2]$ is	[NEET(UG) 2018]
le	ngth? (Free C-O bond length in CO is		1) Geometrical isomer	
1.	128 <i>A</i> ⁰). [NEET-I 2016]		2) Coordination isome	
1)	Ni(CO) ₄ 2) $[Co(CO)_4]^1$		3) Ionization isomerism	
3)	$[Fe(CO)_4]^{2-}$ (4) $[Mn(CO)_6]^+$		4) Linkage isomerism	

NEET	Co – Ordination Compounds			
37. The geometry and magnetic behaviour of the	43. Ethylene diaminetetraacetate (EDTA) ion is:			
complex [Ni(CO) ₄] are [NEET(UG) 2018]	1) Hexadentate ligand with four "O" and two			
1) square planar geometry and diamagnetic	"N" donor atoms [NEET(UG) 2021]			
2) tetrahedral geometry and diamagnetic	2) Unidentate ligand			
3) square planar geometry and paramagnetic	3) Bidentate ligand with two "N" donor atoms			
4) tetrahedral geometry and paramagnetic	4) Tridentate ligand with three "N" donor atoms			
38. Iron carbonyl, Fe(CO)5 is[NEET(UG) 2018]	44. Match List-I wit List-II. [NEET(UG) 2021]			
1) tetranuclear 2) mononuclear	List-I List-II			
3) trinuclear 4) dinuclear	a. $[Fe(CN)_6]^{3-}$ (i) 5.92 BM			
39. What is the correct electronic configuration of	b. $[Fe(H_2O)_6]^{3+}$ (ii) 0 BM			
the central atom in $K_4[Fe(CN)_6]$ based on	c. [Fe(CN) ₆] ⁴⁻ (iii) 4.90 BM			
crystal field theory? [NEET(UG) 2019]	d. $[Fe(H_2O)_6]^{2+}$ (iv) 1.73 BM			
1) $t_4^2 e_g^2$ 2) $t_4^6 e_g^0$	Choose the correct answer from the options			
3) $e^3 t_2^3$ 4) $e^4 t_2^2$	given below			
40. The Crystal Field Stabilisation Energy (CFSE)	1) (a)-(iv), (b)-(ii), (c)-(i), (d)-(iii)			
for [CoCl6] ⁴ - is 18000 cm ⁻¹ . The CFSE for	2) (a)-(ii), (b)-(iv), (c)-(iii), (d)-(i)			
[CoCk] ²⁻ will be-[NEET(UG) 2019 (ODISHA)]	3) (a)-(i), (b)-(iii), (c)-(iv), (d)-(ii)			
1) 6000 cm ⁻¹ 2) 16000 cm ⁻¹	4) (a)-(iv), (b)-(i), (c)-(ii), (d)-(iii)			
3) 18000 cm ⁻¹ 4) 8000 cm ⁻¹	45. The IUPAC name of the complex-			
41. Which of the following is the correct order of	[Ag(H ₂ O) ₂][Ag(CN) ₂] is:[NEET(UG) 2022]			
increasing field strength of ligands to form	1) dicyanidosilver(II) diaquaargentate(II)			
coordination compounds? [NEET(UG) 2020]	2) diaquasilver(II) dicyanidoargentate(II)			
1) $SCN^{-} < F^{-} < C_2O_4^{2-} < CN^{-}$	3) dicyanidosilver(I) diaquaargentate(I)			
2) SCN ⁻ $<$ F ⁻ $<$ CN ⁻ $<$ C ₂ O ₄ ²⁻	*4) diaquasilver(I) dicyanidoargentate(I)			
3) $F^{-} < SCN^{-} < C_2O_4^{-2} < CN^{-}$	46. The order of energy absorbed which is			
4) $CN^{-} < C_2 O_4^{-2} < SCN^{-} < F^{-}$	responsible for the color of complexes			
42. Urea reacts with water to form A which will	(A) $[Ni(H_2O)_2(en)_2]^{2+}$ [NEET(UG) 2022]			
decompose to form B. B when passed through	(B) $[Ni(H_2O)_4(en)]^{2+}$ and (C) $[Ni(en)_3]^{2+}$ is			
Cu^2 + (aq), deep blue colour solution C is	1) (A) > (B) > (C) 2) (C) > (B) > (A)			
formed. What is the formula of C from the	3) (C) > (A) > (B) 4) (B) > (A) > (C)			
following? [NEET(UG) 2020]	47. Which complex compound is most stable?			
1) $CuSO_4$ 2) $[Cu(NH_3)_4]^{2+}$	1) [Co (NH ₃) ₃ (NO3) ₃] [NEET(UG) 2023]			
3) $Cu(OH)_2$ 4) $CuCO_3.Cu(OH)_2$	2) [CoCl ₂ (en) ₂] NO ₃			
	3) [Co (NH ₃) ₆] ₂ (SO ₄) ₃			
	4) [Co (NH ₃) ₄ (H ₂ O) Br](NO ₃) ₂			

NEET

Co – Ordination Compounds

	LEVEL-3 KEY								
1	2	3	4	5	6	7	8	9	10
3	3	2	2	2	1	4	4	3	2
11	12	13	14	15	16	17	18	19	20
2	3	1	2	3	1	2	3	3	1
21	22	23	24	25	26	27	28	29	30
4	2	2	4	4	2	3	3	1	3
31	32	33	34	35	36	37	38	39	40
4	4	1	2	4	1	2	2	2	4
41	42	43	44	45	46	47			
1	2	1	4	4	3	2			

ACADEMY

<u>u a r block cicilients</u>						
	LEVEL-1	7.	Amongst the following metals, which has			
1.	The transition elements have a general		highest melting point?			
	electronic configuration:		1) Ti 2) Cr 3) Fe 4) Cu			
	1) $ns^2 np^6 nd^{1-10}$	8.	The melting point of Zn is lower as compared			
	2) $(n-1) d^{1} - 10 ns^{0} - 2 np^{0} - 6$		to those of the other elements of 3d series			
	3) $(n-1) d^{1} - 10 ns^{1} - 2$		because :			
	4) none.		1) the d-orbitals are completely filled.			
2.	The general electronic configuration of Zn, Cd		2) the d-orbitals are partially filled.			
	and Hg is represented by :		3) d-electrons do not participate in metallic			
	1) $(n-1)d^{10} ns^2$ 2) $(n-1) d^9 4s^2$		bonding.			
	$3) (n-1) d^{10}4s^{1} \qquad 4) (n-1) d^{10}4s^{0}$		4) (1) and (3) both.			
2		9.	Among the following series of transition metal			
3.	The d-block of the periodic table contains the		ions, the one where all metal ions have $3d^2$			
	elements of the groups:		electronic configuration is :			
4	1) $2 - 11$ 2) $3 - 12$ 3) $3 - 11$ 4) $5 - 14$ Which of the following statements is incorrect		1) Ti^{3+} , V^{2+} , Cr^{3+} , Mn^{4+}			
4.	Which of the following statements is incorrect		2) Ti ⁺ , V ⁴⁺ , Cr ⁶⁺ , Mn ⁷⁺			
	about transition elements?1) The last electron enters into them in (n-1) d-		3) Ti^{2+} , V^{3+} , Cr^{2+} , Mn^{3+}			
	orbital.	10.1	4) Ti^{2+} , V^{3+} , Cr^{4+} , Mn^{5+} .			
	2) Their properties are in between those of s- and	10.	Which of the statements is False ?			
	p-block elements.		1) In 3d series, there is a regular increase in the			
	3) The transition element with smallest atomic		first ionisation enthalpy of transition elements			
	number is scandium.		from left to right.			
	4) None of these		2) In 3d series, the negative value of standard			
5.	The total number of electrons in (n-1) d-		electrode potential (E/V) for M^{2+}/M decreases in			
	orbitals in each element, Pd, Ag and Cd		the order $Ti > Mn > Cr > Fe$.			
	respectively are:		3) The decreases in metallic radius coupled with			
	1) 8, 9, 10 2) 8, 10, 10		increase in atomic mass results in a general			
	3) 10, 10, 10 4) none		increase in the density of transition elements from Ti to Cu.			
6.	Which of the following has largest metallic		4) The higher oxidation state are favoured by the			
	radius?		heavier elements (i.e. heavier members) in the			
	1) V 2) Mn 3) Ti 4) Co		groups of d-block.			

d & f block elements

11. Maximum oxidation sate is shown by :16. Which of the following is true for the species1) Os 2) Mn3) Cr4) Co10. Vr^{2+} is reducing in nature.3) Or 4) Co10. Vr^{2+} is reducing in nature.3) Both (1) and (2)4) Oo 10. Vr^{2+} is reducing in nature.3) Both (1) and (2)4) $Ion - 10 d^3ns^2$ 2) $(n - 1) d^3ns^2$ 4) $(n - 1) d^8ns^2$.13. Low oxidation states are found in transition elements when a complex compound has : 1) ligands capable of σ donor character.1) bigger size of atoms of 5d-series elements. This is due to :14. Which of the following statements is correct? 1) The lesser number of oxidation states in 3d- series towards the end of the series is due to the presence of too many electrons whith the ligands 3) (1) and (2) both 4) None is correct18. Which of the following statement si correct?15. The tability of particular oxidation state of metal in aqueous solution is determined by: 1) enthalpy of sublimation of the metal 2) inonisation energy 3) enthalpy of hydration of the metal 2) inonisation energy 3) enthalpy of hydration of the metal 2) inonisation energy10. Vr^{2+} a) Cu^{2+} d) Cu^{2+} 20. Which of the following is due to the presence of too many electrons whith the ligands 3) (1) and (2) both 4) None is correct11. Vr^{2+} a) Cu^{2+} d) Cu^{2+} 15. The stability of particular oxidation state of metal in aqueous solution is determined by: 1) enthalpy of sublimation of the metal 2) enthalpy of hydration of the metal ion 4) all of these.11. Vr^{2+} a) Cu^{2+} d) Cu^{2+} d) Cu^{2+} 20. Which one of the following is determined by: 1) Cu^{2+}		-		u & I block Elements
2) Mn 3) Cr 4) Co 12. The highest oxidation state is exhibited by the transition metals with configuration : 1) $(n-1) d^3ns^2$ 2) $(n-1) d^5ns^1$ 3) $(n-1) d^5ns^2$ 4) $(n-1) d^8ns^2$. 13. Low oxidation states are found in transition elements when a complex compound has : 1) ligands capable of π acceptor character. 2) ligands capable of π acceptor character. 3) ligands capable of π acceptor character as well as σ donor character. 4) ligands incapable of π acceptor character as well as σ donar character. 4) ligands incapable of π acceptor character as well as σ donar character. 14. Which of the following statements is correct? 1) The lesser number of oxidation states in 3d- series in the beginning of the series is due to the presence of too feave electrons to loose or share 2) The lesser number of oxidation states in 3d- series towards the end of the series is due to the presence of too feave electrons to loose or share 2) The lesser number of oxidation states in 3d- series towards the end of the series is due to the presence of too feave electrons with the ligands 3) (1) and (2) both. 4) None is correct 15. The stability of particular oxidation state of a metal in aqueous solution is determined by: 1) enthalpy of sublimation of the metal 2) ionisation energy 3) enthalpy of hydration of the metal ion 4) all of these.	11.	Maximum oxidation sate is shown by :	16.	Which of the following is true for the species
3) Cr 4) Co 12. The highest oxidation state is exhibited by the transition metals with configuration : 1) $(n-1) d^3ns^2$ 2) $(n-1) d^5ns^1$ 3) $(n-1) d^5ns^2$ 4) $(n-1) d^8ns^2$. 13. Low oxidation states are found in transition elements when a complex compound has : 1) ligands capable of π acceptor character. 3) ligands capable of π acceptor character as well as σ donar character. 4) ligands incapable of π acceptor character as well as σ donar character. 14. Which of the following statements is correct? 1) The lesser number of oxidation states in 3d-series in the beginning of the series is due to the presence of too few electrons to loose or share 2) The lesser number of oxidation states in 3d-series towards the end of the series is due to the presence of too few electrons and thus fewer empty orbitals to share electrons with the ligands 3) (1) and (2) both 4) None is correct 15. The stability of particular oxidation state of a metal in aquecous solution is determined by: 1) enthalpy of sublimation of the metal 2) ionisation energy 3) enthalpy of hydration of the metal ion 4) all of these: 3) (Cl is reducing in nature. 2) Mn^{3+} is oxidising in nature. 2) greater effective nuclear charge is experienced by valence electrons because of the weak shielding of the nucleus by $4f$ -electrons in 5d series. 3) (1) and (2) both. 4) None of the f		1) Os		having 3d ⁴ configuration?
4) Co 3) Co 12. The highest oxidation state is exhibited by the transition metals with configuration : 1) $(n-1) d^3ns^2$ 2) $(n-1) d^5ns^1$ 3) $(n-1) d^5ns^2$ 4) $(n-1) d^8ns^2$. 13. Low oxidation states are found in transition elements when a complex compound has : 1) ligands capable of π acceptor character. 2) ligands capable of π acceptor character. 3) ligands capable of π acceptor character as well as σ donor character. 4) ligands incapable of π acceptor character as well as σ donor character. 4) ligands incapable of π acceptor character as well as σ donor character. 4) ligands incapable of π acceptor character as well as σ donor character. 4) ligands incapable of π acceptor character as well as σ donor character. 4) ligands incapable of π acceptor character as well as σ donor character. 4) ligands incapable of π acceptor character as well as σ donor atracter. 4) Which of the following statements is correct? 1) The lesser number of oxidation states in 3d-series towards the end of the series is due to the presence of too many electrons and thus fewer empty orbitals to share electrons with the ligands 3) (1) and (2) both 4) None is correct 15. The stability of particular oxidation state of a metal in aquecous solution is determined by: 1) enthalpy of sublimation of the metal 2) ionisation energy 3) enthalpy of hydration of the metal ion 4) all of these		2) Mn		1) Cr^{2+} is reducing in nature.
 4) Co 3) Both (1) and (2) 4) None of these 3) (n-1) d³ns² 2) (n-1) d⁵ns¹ 3) (n-1) d⁵ns² 4) (n-1) d⁸ns². 13. Low oxidation states are found in transition elements when a complex compound has : 1) ligands capable of π acceptor character. 2) ligands capable of π acceptor character. 3) ligands incapable of π acceptor character as well as σ donar character. 14. Which of the following statements is correct? 1) The lesser number of oxidation states in 3d-series in the beginning of the series is due to the presence of too few electrons to loose or share 2) The lesser number of oxidation states in 3d-series to the following the series is due to the presence of too few electrons to loose or share 2) The lesser number of oxidation states in 3d-series to the off the following of the series is due to the presence of too few electrons to loose or share 2) The lesser number of oxidation states in 3d-series to the following the series is due to the presence of too faw electrons and thus fewer empty orbitals to share electrons with the ligands 3) (1) and (2) both 4) None is correct 15. The stability of particular oxidation state of a metal in aqueous solution is determined by: 1) enthalpy of sublimation of the metal 2) ionisation energy 3) enthalpy of hydration of the metal ion 4) all of these 		3) Cr		2) Mn^{3+} is oxidising in nature.
 12. The highest oxidation state is exhibited by the transition metals with configuration : (n - 1) d³ns² (n - 1) d⁵ns¹ (n - 1) d⁵ns² (n - 1) d⁵ns² (n - 1) d⁵ns² (n - 1) d⁵ns² 13. Low oxidation states are found in transition elements when a complex compound has : (n - 1) d⁵ns² (n - 1) d⁵ns² 13. Low oxidation states are found in transition elements when a complex compound has : (n - 1) d⁵ns² (n - 1) d⁵ns² 13. Low oxidation states are found in transition elements when a complex compound has : (n - 1) d⁵ns² (n - 1) d⁵ns² 13. Low oxidation states are found in transition elements when a complex compound has : (n - 1) d⁵ns² (n - 1) d⁵ns² 14. Which of the following statements is correct? (n + 1) the lesser number of oxidation states in 3d-series towards the end of the series is due to the presence of too many electrons and thus fewer empty orbitals to share electrons with the ligands (1) and (2) both (2) The lesser number of oxidation states in 3d-series towards the end of the series is due to the presence of too many electrons and thus fewer empty orbitals to share electrons and thus fewer empty orbitals to share electrons with the ligands (1) and (2) both (2) the stability of particular oxidation state of a metal in aqueous solution is determined by: (1) enthalpy of sublimation of the metal (2) ionisation energy (3) enthalpy of hydration of the metal ion 4) all of these 		4) Co		
transition metals with configuration :1) $(n-1) d^3ns^2$ 17. First IE of 5d series elements are higher than those of 3d and 4d series elements. This is due to:2) $(n-1) d^5ns^1$ 10. $(n-1) d^5ns^2$.3) $(n-1) d^5ns^2$ 4) $(n-1) d^8ns^2$.13. Low oxidation states are found in transition elements when a complex compound has :1) bigger size of atoms of 5d-series elements than 3d-series elements.13. Low oxidation states are found in transition elements when a complex compound has :1) bigger size of atoms of 5d-series elements than 3d-series elements.13. Low oxidation states are found in transition elements when a complex compound has :1) bigger size of atoms of 5d-series elements than 3d-series elements.14. Which of the following statements is correct10 ligands incapable of π acceptor character as well as σ donor character.14. Which of the following statements is correct10 V15. The stability of particular oxidation state of metal in aqueous solution is determined by: 1) enthalpy of sublimation of the metal 2) ionisation energy 3) enthalpy of hydration of the metal 2) ionisation energy17. First IE of 5d series elements. This is due to :17. First IE of 5d series elements.19. bigger size of atoms of 5d-series elements.18. Which of the following statements is correct?19. Value of these.19. Value of the series is due to the presence of too many electrons and thus fewer empty orbitals to share electrons with the ligands 3) (11) and (2) both 4) None is correct19. Value of the following transition metal ions is diamagnetic?19. Co2+ 2) Ni2+ 3) Cu2+ 4) Zm2+20. Magnetic mome	12.	The highest oxidation state is exhibited by the		, , , , , ,
 1) (n − 1) d³ns² 2) (n − 1) d⁵ns¹ 3) (n − 1) d⁵ns² 4) (n − 1) d⁸ns². 13. Low oxidation states are found in transition elements when a complex compound has : 1) ligands capable of π acceptor character. 2) ligands capable of π acceptor character. 3) ligands capable of π acceptor character as well as σ donor character. 4) ligands incapable of π acceptor character as well as σ donar character. 14. Which of the following statements is correct? 15. The stability of particular oxidation state of a metal in aqueous solution is determined by: 1) enthalpy of sublimation of the metal 2) ionisation energy 3) enthalpy of hydration of the metal ion 4) all of these. those of 3d and 4d series elements. This is due to to: 1) bigger size of atoms of 5d-series elements than 3d-series elements. 2) greater effective nuclear charge is experienced by valence electrons because of the weak shielding of the nucleus by 4f-electrons in 5d series. 3) (1) and (2) both 4) None is correct 15. The stability of particular oxidation state of a metal in aqueous solution is determined by: 1) enthalpy of hydration of the metal ion 4) all of the series 		transition metals with configuration :	17.	·
2) $(n - 1) d^5ns^1$ 3) $(n - 1) d^5ns^2$ 4) $(n - 1) d^8ns^2$. 13. Low oxidation states are found in transition elements when a complex compound has : 1) ligands capable of π acceptor character. 2) ligands capable of π acceptor character as well as σ donor character. 4) ligands incapable of π acceptor character as well as σ donar character. 14. Which of the following statements is correct? 1) The lesser number of oxidation states in 3d- series in the beginning of the series is due to the presence of too few electrons to loose or share 2) The lesser number of oxidation states in 3d- series towards the end of the series is due to the presence of too few electrons and thus fewer empty orbitals to share electrons with the ligands 3) (1) and (2) both 4) None is correct 15. The stability of particular oxidation state of a metal in aqueous solution is determined by: 1) enthalpy of sublimation of the metal 2) ionisation energy 3) enthalpy of hydration of the metal ion 4) all of these		1) $(n-1) d^3ns^2$		
3) $(n - 1) d^{5}ns^{2}$ 4) $(n - 1) d^{8}ns^{2}$. 13. Low oxidation states are found in transition elements when a complex compound has : 1) ligands capable of π acceptor character. 2) ligands capable of π acceptor character as well as σ donor character. 4) ligands incapable of π acceptor character as well as σ donor character. 4) ligands incapable of π acceptor character as well as σ donor character. 14. Which of the following statements is correct? 1) The lesser number of oxidation states in 3d-series number of oxidation states in 3d-series in the beginning of the series is due to the presence of too few electrons to loose or share? 2) The lesser number of oxidation states in 3d-series towards the end of the series is due to the presence of too faw electrons and thus fewer empty orbitals to share electrons with the ligands 3) (1) and (2) both 4) None is correct 15. The stability of particular oxidation state of a metal in aqueous solution is determined by: 1) enthalpy of sublimation of the metal ion 4) all of these		2) $(n-1) d^{5}ns^{1}$		
 13. Low oxidation states are found in transition elements when a complex compound has : ligands capable of π acceptor character. ligands capable of π acceptor character as well as σ donor character. ligands incapable of π acceptor character as well as σ donor character. 14. Which of the following statements is correct? The lesser number of oxidation states in 3dseries in the beginning of the series is due to the presence of too few electrons to loose or share The lesser number of oxidation states in 3dseries towards the end of the series is due to the presence of too many electrons and thus fewer empty orbitals to share electrons with the ligands (1) and (2) both (1) and (2) both (2) Mich of the following has the maximum number of unpaired d-electron? (1) Zn²⁺ 2) Fe²⁺ 3) Ni³⁺ 4) Cu²⁺ 10. The stability of particular oxidation state of metal in aqueous solution is determined by: (1) enthalpy of sublimation of the metal (2) ionisation energy (3) enthalpy of hydration of the metal ion 4) all of these 		3) $(n-1) d^5ns^2$ 4) $(n-1) d^8ns^2$.		
1) ligands capable of π acceptor character. 2) ligands capable of π acceptor character as well as σ donor character. 4) ligands incapable of π acceptor character as well as σ donar character. 14. Which of the following statements is correct? 1) The lesser number of oxidation states in 3d- series in the beginning of the series is due to the presence of too few electrons to loose or share 2) The lesser number of oxidation states in 3d- series towards the end of the series is due to the presence of too few electrons and thus fewer empty orbitals to share electrons with the ligands 3) (1) and (2) both 4) None is correct 15. The stability of particular oxidation state of a metal in aqueous solution is determined by: 1) enthalpy of sublimation of the metal 2) ionisation energy 3) enthalpy of hydration of the metal ion 4) all of these	13.	Low oxidation states are found in transition		
2) ligands capable of σ donor character. 3) ligands capable of π acceptor character as well as σ donor character. 4) ligands incapable of π acceptor character as well as σ donar character. 14. Which of the following statements is correct? 1) The lesser number of oxidation states in 3d- series in the beginning of the series is due to the presence of too few electrons to loose or share 2) The lesser number of oxidation states in 3d- series towards the end of the series is due to the presence of too many electrons and thus fewer empty orbitals to share electrons with the ligands 3) (1) and (2) both 4) None is correct 15. The stability of particular oxidation state of a metal in aqueous solution is determined by: 1) enthalpy of sublimation of the metal 2) ionisation energy 3) enthalpy of hydration of the metal ion 4) all of these		elements when a complex compound has :		2) greater effective nuclear charge is experienced
3) ligands capable of π acceptor character as well as σ donor character. 4) ligands incapable of π acceptor character as well as σ donar character. 14. Which of the following statements is correct? 1) The lesser number of oxidation states in 3d- series in the beginning of the series is due to the presence of too few electrons to loose or share 2) The lesser number of oxidation states in 3d- series towards the end of the series is due to the presence of too many electrons and thus fewer empty orbitals to share electrons with the ligands 3) (1) and (2) both 4) None is correct 15. The stability of particular oxidation state of a metal in aqueous solution is determined by: 1) enthalpy of sublimation of the metal 2) ionisation energy 3) enthalpy of hydration of the metal ion 4) all of these		1) ligands capable of π acceptor character.		by valence electrons because of the weak
3) fightes explore of n acceptor character isas σ donor character.4) ligands incapable of π acceptor character as well as σ donar character.14. Which of the following statements is correct?1) The lesser number of oxidation states in 3d- series in the beginning of the series is due to the presence of too few electrons to loose or share 2) The lesser number of oxidation states in 3d- series towards the end of the series is due to the presence of too many electrons and thus fewer empty orbitals to share electrons with the ligands 3) (1) and (2) both 4) None is correct3) (1) and (2) both $1) Zn^{2+} 2) Fe^{2+} 3) Ni^{3+} 4) Cu^{2+}$ 20. Magnetic moment of $Cr^{+2} (Z = 24), Mn^{+2} (Z = 25)$ and $Fe^{2+}(Z = 26)$ are x,y,z. They are in order: $1) x < y < z$ $3) z < x = y$ $4) x = z < y$ 15. The stability of particular oxidation state of a metal in aqueous solution is determined by: $1)$ enthalpy of sublimation of the metal $2)$ ionisation energy $3)$ enthalpy of hydration of the metal ion $4)$ all of these3) enthalpy of hydration of the metal ion $4)$ all of these		2) ligands capable of σ donor character.		shielding of the nucleus by $4f$ -electrons in 5d
4) None of these. 4) None of the series is due to the presence of too few electrons to loose or share 2) The lesser number of oxidation states in 3d- series in the beginning of the series is due to the presence of too few electrons to loose or share 2) The lesser number of oxidation states in 3d- series towards the end of the series is due to the presence of too many electrons and thus fewer empty orbitals to share electrons with the ligands 3) (1) and (2) both 4) None is correct 15. The stability of particular oxidation state of a metal in aqueous solution is determined by: 1) enthalpy of sublimation of the metal 2) ionisation energy 3) enthalpy of hydration of the metal ion 4) all of these		3) ligands capable of π acceptor character as well		series.
14) Ingands incapable of π acceptor character as well as σ donar character.18.Which amongst the following can give the greater number of oxidation states?14. Which of the following statements is correct? 1) The lesser number of oxidation states in 3d- series in the beginning of the series is due to the presence of too few electrons to loose or share 2) The lesser number of oxidation states in 3d- series towards the end of the series is due to the presence of too many electrons and thus fewer empty orbitals to share electrons with the ligands 3) (1) and (2) both 4) None is correct18.Which amongst the following can give the greater number of oxidation states? 1) V 2) Mn3) Cr4) Fe15. The stability of particular oxidation state of a metal in aqueous solution is determined by: 1) enthalpy of sublimation of the metal 2) ionisation energy 3) enthalpy of hydration of the metal ion 4) all of these18.Which amongst the following can give the greater number of oxidation states? 1) V 2) Mn 3) Cr4) Re10V 2) Mn3) Cr4) Fe11V 2) Pe ²⁺ 2) Fe ²⁺ 3) Ni ³⁺ 4) Cu ²⁺ 20. Magnetic moment of Cr ⁺² (Z = 26) are x,y,z. They are in order: 1) $x < y < z$ 2) $x > y > z$ 3) $z < x = y$ 4) $x = z < y$ 15. The stability of particular oxidation state of a metal in aqueous solution is determined by: 1) enthalpy of hydration of the metal 2) ionisation energy 3) enthalpy of hydration of the metal ion 4) all of these18.10Co ²⁺ 2) Ni ²⁺ 3) Cu ²⁺ 4) Zn ²⁺ 21.20.Which of the following ions give colourless aqueous solution?		as σ donor character.	-	3) (1) and (2) both.
weil as 6 donar character.14. Which of the following statements is correct?1) The lesser number of oxidation states in 3d- series in the beginning of the series is due to the presence of too few electrons to loose or share 2) The lesser number of oxidation states in 3d- series towards the end of the series is due to the presence of too many electrons and thus fewer empty orbitals to share electrons with the ligands 3) (1) and (2) both 4) None is correct10V2) Mn3) Cr4) Fe19. Which of the following has the maximum number of unpaired d-electron? 1) Zn^{2+} 2) Fe^{2+} 3) Ni^{3+} 4) Cu^{2+} 20. Magnetic moment of Cr^{+2} (Z = 26) are x,y,z. They are in order: 1) $x < y < z$ 3) $z < x = y$ 4) $x = z < y$ 15. The stability of particular oxidation state of a metal in aqueous solution is determined by: 1) enthalpy of sublimation of the metal 2) ionisation energy 3) enthalpy of hydration of the metal ion 4) all of these1014. Which of the following ions give colourless aqueous solution?10		4) ligands incapable of π acceptor character as		4) None of these.
 14. which of the following statements is correct? The lesser number of oxidation states in 3d-series in the beginning of the series is due to the presence of too few electrons to loose or share The lesser number of oxidation states in 3d-series towards the end of the series is due to the presence of too many electrons and thus fewer empty orbitals to share electrons with the ligands (1) and (2) both (1) enthalpy of sublimation of the metal (2) ionisation energy (3) enthalpy of hydration of the metal ion (4) all of these 14. Which of the following transition metal ion (4) all of these 15. The stability of particular oxidation state of a metal in aqueous solution is determined by: (1) enthalpy of sublimation of the metal (2) ionisation energy (3) enthalpy of hydration of the metal ion (4) all of these (4) all of these (5) the set of the section of the metal ion (5) and Fe²⁺(Z = 26) are x,y,z. They are in order: (1) X < y < z (2) X > y > z (3) Z < x = y (4) X = z < y (2) Ni²⁺ (3) Cu²⁺ (4) Rese (3) enthalpy of hydration of the metal ion (4) all of these (4) all of these (5) the set of the following ions give colourless aqueous solution? (5) the set of the following ions give colourless aqueous solution? (5) the set of the following ions give colourless aqueous solution? (6) the set of the following ions give colourless aqueous solution? (7) the set of the		well as σ donar character.	18.	
 1) The lesser number of oxidation states in 3d-series in the beginning of the series is due to the presence of too few electrons to loose or share 2) The lesser number of oxidation states in 3d-series towards the end of the series is due to the presence of too many electrons and thus fewer empty orbitals to share electrons with the ligands 3) (1) and (2) both 4) None is correct 15. The stability of particular oxidation state of a metal in aqueous solution is determined by: 1) enthalpy of sublimation of the metal 2) ionisation energy 3) enthalpy of hydration of the metal ion 4) all of these 19. Which of the following has the maximum number of unpaired d-electron? 1) Zn²⁺ 2) Fe²⁺ 3) Ni³⁺ 4) Cu²⁺ 20. Magnetic moment of Cr⁺² (Z = 24), Mn⁺² (Z = 25) and Fe²⁺(Z = 26) are x,y,z. They are in order: 1) x < y < z 2) x > y > z 3) z < x = y 4) x = z < y 21. Which one of the following transition metal ions is diamagnetic? 1) Co²⁺ 2) Ni²⁺ 3) Cu²⁺ 4) Zn²⁺ 22. Which of the following ions give colourless aqueous solution?	14.	Which of the following statements is correct?		
series in the beginning of the series is due to the presence of too few electrons to loose or share 2) The lesser number of oxidation states in 3d- series towards the end of the series is due to the presence of too many electrons and thus fewer empty orbitals to share electrons with the ligands 3) (1) and (2) both 4) None is correct 15. The stability of particular oxidation state of a metal in aqueous solution is determined by: 1) enthalpy of sublimation of the metal 2) ionisation energy 3) enthalpy of hydration of the metal ion 4) all of these		1) The lesser number of oxidation states in 3d-		
2) The lesser number of oxidation states in 3d- series towards the end of the series is due to the presence of too many electrons and thus fewer empty orbitals to share electrons with the ligands 3) (1) and (2) both 4) None is correct 15. The stability of particular oxidation state of a metal in aqueous solution is determined by: 1) enthalpy of sublimation of the metal 2) ionisation energy 3) enthalpy of hydration of the metal ion 4) all of these		series in the beginning of the series is due to the	19.	
 2) The fease humber of obtained states in 5d series towards the end of the series is due to the presence of too many electrons and thus fewer empty orbitals to share electrons with the ligands 3) (1) and (2) both 4) None is correct 15. The stability of particular oxidation state of a metal in aqueous solution is determined by: 1) enthalpy of sublimation of the metal 20. Magnetic moment of Cr⁺² (Z = 24), Mn⁺² (Z = 25) and Fe²⁺(Z = 26) are x,y,z. They are in order: 1) x < y < z 2) x > y > z 3) z < x = y 4) x = z < y 21. Which one of the following transition metal ions is diamagnetic? 1) Co²⁺ 2) Ni²⁺ 3) Cu²⁺ 4) Zn²⁺ 22. Which of the following ions give colourless aqueous solution? 		presence of too few electrons to loose or share		-
 presence of too many electrons and thus fewer empty orbitals to share electrons with the ligands 3) (1) and (2) both 4) None is correct 15. The stability of particular oxidation state of a metal in aqueous solution is determined by: 1) enthalpy of sublimation of the metal 2) ionisation energy 3) enthalpy of hydration of the metal ion 4) all of these 25) and Fe²⁺(Z = 26) are x,y,z. They are in order: 25) and Fe²⁺(Z = 26) are x,y,z. They are in order: 26) are x,y,z. They are in order: 27) x > y > z 28) x < y < 2 29) x > y > z 20) x > y > z 21) x < y < z 22) x > y > z 23) z < x = y 21. Which one of the following transition metal ions is diamagnetic? 22. Which of the following ions give colourless aqueous solution? 		2) The lesser number of oxidation states in 3d-		1) Zn^{2+} 2) Fe^{2+} 3) Ni^{3+} 4) Cu^{2+}
empty orbitals to share electrons with the ligands (1) and (2) both (4) None is correctorder: $1) x < y < z$ (3) $z < x = y$ $2) x > y > z$ (4) $x = z < y$ 15. The stability of particular oxidation state of a metal in aqueous solution is determined by: (1) enthalpy of sublimation of the metal (2) ionisation energy (3) enthalpy of hydration of the metal ion (4) all of theseorder: $1) x < y < z$ (2) $x > y > z$ (3) $z < x = y$ $4) x = z < y$ 21. Which one of the following transition metal ions is diamagnetic? (1) $Co^{2+} 2$) $Ni^{2+} 3$ $Cu^{2+} 4$ Zn^{2+} 22. Which of the following ions give colourless aqueous solution?		series towards the end of the series is due to the	20.	Magnetic moment of Cr^{+2} (Z =24), Mn^{+2} (Z =
3) (1) and (2) both 4) None is correct1) $x < y < z$ 3) $z < x = y$ 2) $x > y > z$ 3) $z < x = y$ 15. The stability of particular oxidation state of a metal in aqueous solution is determined by: 1) enthalpy of sublimation of the metal 2) ionisation energy 3) enthalpy of hydration of the metal ion 4) all of these1) $x < y < z$ 2) $x > y > z$ 3) $z < x = y$ 21. Which one of the following transition metal ions is diamagnetic? 1) Co^{2+} 2) Ni^{2+} 3) Cu^{2+} 4) Zn^{2+} 22. Which of the following ions give colourless aqueous solution?		presence of too many electrons and thus fewer		25) and $Fe^{2+}(Z = 26)$ are x,y,z. They are in
 4) None is correct 5. The stability of particular oxidation state of a metal in aqueous solution is determined by: enthalpy of sublimation of the metal enthalpy of sublimation of the metal ionisation energy enthalpy of hydration of the metal ion all of these 		empty orbitals to share electrons with the ligands		order:
 15. The stability of particular oxidation state of a metal in aqueous solution is determined by: enthalpy of sublimation of the metal enthalpy of hydration of the metal ion enthalpy of hydration of the metal ion enthalpy of hydration of the metal ion 10. (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		3) (1) and (2) both		1) $x < y < z$ 2) $x > y > z$
 metal in aqueous solution is determined by: 1) enthalpy of sublimation of the metal 2) ionisation energy 3) enthalpy of hydration of the metal ion 4) all of these 		4) None is correct		3) $z < x = y$ 4) $x = z < y$
 1) enthalpy of sublimation of the metal 2) ionisation energy 3) enthalpy of hydration of the metal ion 4) all of these 	15.	The stability of particular oxidation state of a	21.	Which one of the following transition metal
 2) ionisation energy 3) enthalpy of hydration of the metal ion 4) all of these 		metal in aqueous solution is determined by:		ions is diamagnetic?
 a) enthalpy of hydration of the metal ion all of these 				1) Co^{2+} 2) Ni^{2+} 3) Cu^{2+} 4) Zn^{2+}
4) all of these			22.	Which of the following ions give colourless
4) all of these. (1) Ni^{2+} 2) Fe^{2+} 3) Cu^{2+} 4) Cu^{+}				aqueous solution?
		4) all of these.		1) Ni ²⁺ 2) Fe ²⁺ 3) Cu ²⁺ 4) Cu ⁺

d & f Block Elements

NEET

	-
-	
-	

- 23. A metal ion from the first transition series has a magnetic moment (calculated) of 3.87 B.M. How many unpaired electrons are expected to be present in the ion?
 - 1) 1 2) 2 3) 3 4) 4
- 24. The magnetic moment of 25Mn in ionic state is
 - 4.83 B.M, then Mn is in :

1) +2 state	2) +3 state
-------------	-------------

- 3) +4 state 4) +5 state
- 25. The colour of transition metal ions is attributed to:
 - 1) exceptionally small size of cations
 - 2) absorption of ultraviolet rays
 - 3) incomplete (n 1) d subshell
 - 4) absorption of infrared radiations
- 26. The catalytic activity of the transition metals and their compounds is ascribed to :
 - 1) their chemical reactivity.
 - 2) their magnetic behaviour.
 - 3) their unfilled d-orbitals.
 - 4) their ability to adopt multiple oxidation state and their complexing ability.

27. Which forms interstitial compounds?

1) Fe 2) Co 3) Ni 4) All

28. Which of the following statement is correct?

1) Transition metals and their many compounds act as good catalyst.

2) The enthalpies of atomistation of the transition metals are high.

3) The transition metals generally form interstitial compounds with small atoms like C,B, H etc.

4) All of these

29. The yellow colour of chromates changes to orange on acidification due to formation of:

1) Cr³⁺ 2) Cr₂O₃ 3) Cr₂O₇²⁻4) CrO₄⁻

- 30. When acidified solution of $K_2Cr_2O_7$ is shaken with aqueous solution of $FeSO_4$, then :
 - 1) $Cr_2O_7^{2-}$ ion is reduced to Cr^{3+} ions

2)
$$Cr_2O_7^{2-}$$
 ion is converted to CrO_4^{2-} ions

3)
$$Cr_2O_7^{2-}$$
 ion is reduced to Cr

4) $Cr_2O_7^{2-}$ ion is converted to CrO_3

31. Which of the following compounds is used as the starting material for the preparation of potassium dichromate?

- 2) PbCrO₄ (chrome yellow)
- 3) FeCr₂O₄ (chromite)
- 4) PbCrO₄.PbO (chrome red)
- 32. Manganous salt in presence of catalyst zinc sulphate or zinc oxide is oxidised by potassium permanganate in neutral of faintly alkaline medium to :

1) MnO ₂	2) Mn ₂ O ₇
3) Mn ₂ O ₃	4) Can not be oxidized

33. KMnO₄ is the oxo salt of :

1) MnO₂ 2) Mn₂O₇ 3) MnO₃ 4) Mn₂O₃

34. Which of the following statements is false?

1) An acidified solution of $K_2Cr_2O_7$ liberates iodine from potassium iodide

2) In acidic solution, dichromate ions are converted to chromate ions.

3) Potassium dichromate on heating undergoes decomposition to give Cr_2O_3 and O_2 gas.

4) Potassium dichromate is used as a titrant of Fe^{2+} ion.

NEET	d & f Block Elements				
35. KMnO ₄ on heating at temperature 513 K	41. Across the lanthanide series, the basicity of the				
decomposes to give :	lanthanoide hydroxides :				
1) K_2MnO_4 , MnO_2 and O_2	1) increases				
2) K_2O , MnO_2 and O_2	2) decreases				
3) K ₂ MnO ₄ , Mn ₂ O ₇ and KO ₂	3) first increases and then decreases				
4) K ₂ MnO ₄ and MnO ₂	4) does not change				
36. When SO ₂ is passed through acidified	42. The +3 ion of which one of the following has				
-	half filled 4f subshell?				
K ₂ Cr ₂ O ₇ solution :	1) La 2) Lu 3) Gd 4) Ac				
1) the solution turns blue.	43. Actinides :				
2) SO ₂ is reduced.	1) are all synthetic elements				
3) green $Cr_2(SO_4)_3$ is formed.	2) includes element 104				
4) the solution is decolourised.	3) have only short lived isotopes				
37. Mohr's salt is :	4) have variable valency				
1) Fe ₂ (SO ₄) ₃ .(NH ₄) ₂ SO ₄ .6H ₂ O	44. The lanthonoide contraction is reponsible for				
2) MgSO ₄ .7H ₂ O	the fact that				
3) FeSO ₄ .(NH ₄) ₂ SO ₄ .6H ₂ O	1) Zr and Y have about the same radius				
4) FeSO ₄ .7H ₂ O	2) Zr and Nb have similar oxidation state3) Zr and Hf have about the same radius				
38. The f-block of the periodic table contains those	4) Zr and Ce have the same oxidation state				
elements in which:					
1) only 4f orbitals are progressively filled in 6th	45. Lanthanoid and actinides resemble in : 1) electronic configuration				
period.	2) oxidation state				
2) only 5f orbitals are progressively filled in 7th					
period.	3) ionization energy4) formation of complexes				
3) 4f and 5f orbitals are progressively filled in 6th	46. The separation of lanthanoids by ion exchange				
and 7th periods respectively.	method is based on				
4) none	1) sizes of the ions				
39. Among the lanthanoides the one obtained by	2) oxidation state of the ions				
synthetic method is :	3) the solubility of their nitrates				
1) Lu 2) Pm 3) Pr 4) Gd	4) basicity of hydroxides of lanthanides				
40. The most common lanthanoide is :					
1) lanthanum 2) cerium					
3) samarium 4) plutonium					

NEET

1	2	3	4	5	6	7	8	9	10
3	1	2	4	3	3	2	4	4	1
11	12	13	14	15	16	17	18	19	20
1	3	3	3	4	3	2	2	2	4
21	22	23	24	25	26	27	28	29	30
4	4	3	3	3	4	4	4	3	1
31	32	33	34	35	36	37	38	39	40
3	1	2	2	1	3	3	3	2	2
41	42	43	44	45	46	47	48	49	50
2	3	4	3	1	1				

LEVEL-2

- 1. Amongst the following set of transition metal ions, the one in which all metal ions do not have d-electrons?
 - 1) Cr(VI), Ti(IV), Mn (VII)
 - 2) V(V), Mn(VI), Ni(IV)
 - 3) Sc(III), V (V), Ti (III)
 - 4) Cr(VI), Sc(III), Mn(VI)
- 2. The radii (metallic) of Fe,Co and Ni are nearly same.

This is due to the fact that:

1) lanthanide contraction

2) increased interelectronic repulsion is balanced by increased nuclear charge.

3) increase in radii due to increase in 'n' is compensated by decrease in radii due to increase in effective nuclear charge (Z).

4) atomic radii do not remain constant but decrease in a normal gradation.

3. Which of the following statements is incorrect?
1) In each row i.e. transition series melting points of transition metals rise to a maximum at d⁵ (excludes, Cr, Mn and Tc) and fall regularly as the atomic number increases.

2) The transition metals are very much hard and have low volatility.

3) The metals of the second and third series have greater enthalpies of atomisation than the corresponding elements of the first seires.

4) None

4. Which of the following transition metal ions has the lowest density?

1) Copper	2) Nickel
3) Scandium	4) Zinc

NE	ET	d & f Block Elements
5.	The names transition and inner transition	11. E^{Θ} values for the couples Cr^{3+}/Cr^{2+} and
	metals are used to indicate the elements of :	Mn^{3+}/Mn^{2+} are – 0.41 and + 1.51 volts
	1) d-block elements only	respectively. Considering these values select
	2) f-block elements only	the correct option from the following
	3) p- and d-blocks elements respectively	statements.
	4) d- and f-blocks elements respectively	1) Cr^{2+} acts as a reducing agent and Mn^{2+} acts
6.	Which of the following does not belong to 3d	as an oxidising agent in their aqueous solutions.
	series of transition elements?	2) Cr^{2+} (aq.) is more stable than Cr^{3+} (aq.).
	1) Titanium 2) Iron	
	3) Palladium 4) Vanadium.	3) Mn^{3+} (aq.) is more stable than Mn^{2+} (aq).
7.	Which of the following is the most suitable	4) None of these.
	description of transition elements?	12. Which oxide of manganese is most acidic in
	1) Low melting points	nature ?
	2) No catalytic activity.	1) MnO 2) Mn ₂ O ₇
	3) Show variable oxidation states.	3) Mn_2O_3 4) MnO_2 .
	4) Exhibit inert pair effect.	13. The maximum oxidation state shown by $V(Z =$
8.	In which of the following pairs of elements, the	23), $Cr(Z = 24)$, $Co(Z = 27)$, $Sc(Z = 21)$ are
	(n-1) d-orbitals have same number of electrons?	respectively :
	1) Mn, Fe 2) Cr, Mn	1) + 5, + 6, + 3, + 3 2) + 3, + 4, + 5, + 2
	3) Cu, Zn 4) (2) and (3)	3) + 5, + 3, + 2, + 1 4) + 4 in each case.
9.	Which of the following factor may be regarded	14. In which compound does vanadium have an
	as the main cause of Lanthanide contraction?	oxidation number of +4?
	1) Poor shielding by 4f-electrons as compared to	1) NH_4VO_2 2) $K_4[V(CN)_6]$
	the electrons in the other sub-shells.	3) VSO ₄ 4) VOSO ₄
	2) Effective shielding of one of the 4f-electrons by	15. In general, the transition elements exhibit their
	another in the sub-shell.	highest oxidation states in their compounds
	3) Poorer shielding by 5d electron of 4f-electrons.	with elements like:
	4) Greater shielding of 5 d electron by 4f-electron.	1) C 2) S 3) S and P4) F and O.
10.	Copper has higher second ionization energy	16. The E^{Θ} (M ²⁺ /M) value for copper is positive
	than that of both adjacent elements. This is	(+ 0.34V). It is due to :
	because of :	1) its higher enthalpy of atomization.
	1) smaller size of copper (I) ion.	2) its lower enthalpy of hydration.
	2) d^{10} configuration of copper (I) ion.	3) both (1) and (2)
	3) higher nuclear charge of copper (I) ion.	4) none
	4) Larger size of copper (I) ion.	-,

NEET	d & f Block Elements
17. Which of the following pairs of ions has	24. The highest number of unpaired elelctrons are
magnetic moment of 5.93 B.M.?	in :
1) Mn ²⁺ , Fe ³⁺ 2) Mn ²⁺ , Cr ³⁺	1) Fe
3) Fe ²⁺ , Co ³⁺ 4) None	2) Fe ²⁺
18. Amongst the following the lowest degree of	3) Fe ³⁺
paramagnetism per mole of the compound at	4) all have equal number of unpaired electrons
298 K will be shown by:	25. The least stable oxide at room temperature is :
1) MnSO ₄ .4H ₂ O 2) CuSO ₄ .5H ₂ O	1) ZnO 2) CuO
3) FeSO ₄ .6H ₂ O 4) NiSO ₄ .6H ₂ O	3) Sb ₂ O ₃ 4) Ag ₂ O
19. Compound that is both paramagnetic and	26. Titanium shows magnetic moment of 1.73 BM
coloured is :	in its compound. What is the oxidation number
1) K ₂ Cr ₂ O ₇ 2) (NH ₄) ₂ [TiCl ₆]	of Ti in the compound?
3) VOSO ₄ 4) K ₃ [Cu(CN) ₄]	1) +1 2) +4 3) +3 4) +2
20. The ions from among the following which are	27. Which one of the following characteristics of
colourless are :	the transition metals is associated with their
(i) Ti^{4+} , (ii) Cu^{+1} ,	catalytic activity ?
(iii) Co^{3+} , (iv) Fe^{2+} .	1) Colour of hydrated ions.
1) (i) and (ii) only 2) (i), (ii) and (iii)	2) Variable oxidation states.3) High enthalpy of atomization.
3) (iii) and (iv) 4) (ii) and (iii).	4) Paramagnetic behaviour.
21. Which of the followig group of ions is	28. Geman silver is:
paramagnetic in nature :	1) silver made in Germany
1) Cu^+ , Zn^{2+} , Sc^{3+} 2) Mn^{2+} , Fe^{3+} , Ni^{2+}	2) an alloy of silver
3) Cr^{2+} , Mn^{3+} , $Sc^{3+}4$) Cu^{2+} , Ni^{2+} , Ti^{4+}	3) an alloy of copper
22. Of the ions Zn^{2+} , Ni^{2+} and Cr^{3+} (atomic	4) a silver white paint.
number $Zn = 30$, $Ni = 28$, $Cr = 24$) :	29. Which one of the following alloys contain only
1) only Zn^{2+} is colourless and Ni ²⁺ and Cr ³⁺	Cu and Zn?
are coloured.	1) Bronze
2) all three are colourless.	2) Brass
3) all three are coloured.	3) Gun metal 4) Bell metal
4) only Ni ²⁺ is coloured and Zn^{2+} and Cr^{3+} are	30. Which of the following can be used for the
colourless.	conversion of potassium manganate to
23. Which of the following is more paramagnetic?	potassium permanganate?
1) Fe^{2+} 2) Fe^{3+} 3) Cr^{3+} 4) Mn^{3+}	1) O ₃ 2) Cl ₂ 3) CO ₂ 4) All.
	KURLA, MUMBAI, MAHARASHTRA -70 Ph: 9833905914

NE	ET			d & f Block Elements
31.	The number of moles of KMnO ₄ that will be		decreases	
	needed to react with one mole of sulphite ion in		3) La is actually an	element of transition series
	acidic medium is:		rather than lanthanio	de series
	1) 2/5 2)3/5 3) 4/5 4) 1		4) Atomic radii of Z	r and Hf are same because of
32.	In the iodometric estimation in the laboratory		lanthanide contraction	on
	which process is involved?	37.	Transuranic elemen	ts begin with
	1) $Cr_2O_7^{2-} + H^+ + I^- \rightarrow 2Cr^{3+} + I_2$		1) Np 2) Cm	3) Pu 4) U
	$I_2 + S_2O_3^{2-} \rightarrow S_4O_6^{2-} + I^-$	38.	Lanthanide contrac 1) shielding by 4f ele	tion is due to increase in : ectrons
	2) $MnO_4^- + H^+ + I^- \rightarrow Mn^{2+} + I_2$		2) atomic number	
	$I_2 + S_2O_3^- \rightarrow S_4O_6^{2-} + I^-$		3) effective nuclear of	charge
	3) $MnO_4^- + OH^- + I^- \rightarrow MnO_2 + I_2$		4) size of 4f orbitals	
		39.		ving is not an actinoide?
	$I_2 + S_2O_3^{2-} \rightarrow S_4O_6^{2-} + I^{-}$		1) Curium	2) Californium
	4) $Cr_2O_7^{2-} + OH^- + I^- \rightarrow 2Cr^{3+} + I_2$	40	3) uranium	4) terbium
	$I_2 + S_2O_3^{2-} \rightarrow S_4O_6^{2-} + I^{-}$	40.		sed with KOH, a coloured
33.	K ₂ Cr ₂ O ₇ reacts with NH ₄ Cl in presence of		-	ned. The product and its
	H ₂ SO ₄ . The product formed is :	-0	colour is :	2) MnoOo brown
	1) chromyl chlorate with green vapour		1) K ₂ MnO ₄ , green	
	2) chromous chloride with white vapour		3) Mn_2O_4 , black	, <u>1</u> , <u>1</u>
	3) chromous chloride with blue vapour	41.	UEWIT	ng, the coloured compound
	4) chromyl chloride with deep red colour		is :	
34.	Potassium dichromate can be converted into		1) CuCl	2) K ₃ [Cu(CN) ₄]
	potassium chromate using:		3) CuF ₂	4) [Cu(CH ₃ CN) ₄]BF ₄
	1) KOH 2) H ₂ SO ₄ 3) KCI 4) KNO ₂	42.	Among the followi	ng pairs of ions, the lower
35.	When hydrogen peroxide is added to acidified			aqueous solution is more
	potassium dichromate, a blue colour is		stable than the othe	
	produced due to formation of :		1) T <i>l</i> ⁺ , T <i>l</i> ³⁺	
	1) CrO_3 2) Cr_2O_3 3) CrO_5 4) CrO_4^{2-}		3) Cr ²⁺ , Cr ³⁺	4) V ²⁺ , VO ²⁺
36.	Which of the following statements is not	43.	Which of the follow	ving is an amphoteric oxide?
	correct?		1) CrO3	
	1) La(OH)3 is less basic than Lu(OH)3		2) Cr ₂ O ₃	
	2) In lanthanide series ionic radius of Ln^{3+} ions		3) V ₂ O ₃	4) TiO

N		
	_	

44. For the reaction,

 $Cr_2O_7^{2-} \xrightarrow{pH=x} CrO_4^{2-} \xrightarrow{pH=y} Cr_2O_7^{2-} pH values 'x'$

and 'y' can be

- 3) 8 and 4 4) 8 and 9
- 45. Assertion : Separation of Zr and Hf is difficultReason : Zr and Hf lie in the same group of the periodic table.

1) If both assertion and reason are true and reason is a correct explanation of assertion.

2) If both assertion and reason are true but reason is not a correct explanation of assertion.

- 3) If assertion is true but reason is false.
- 4) If assertion and reason both are false.
- 46. Which is least stable in aqueous medium 1) Fe^{+2} 2) Co^{+2} 3) Ni^{+2} 4) Mn^{+2}
- 47. The radius of La³⁺ (Atomic number of La = 57) is 1.06Å. Which one of the following given values will be closest to the radius of Lu³⁺ (Atomic number of Lu = 71)?
 1) 1.60Å 2) 1.40Å 3) 1.06Å 4) 0.85Å
- 48. The "spin-only" magnetic moment [in units of Bohr magneton, (μ_B) of Ni²⁺ in aqueous solution would be (atomic number of Ni = 28) 1) 2.84 2) 4.90 3) 0 4) 1.73
- 49. Identify the incorrect statement among the following.

1) The chemistry of various lanthanoids is very similar.

2) 4f and 5f orbitals are equally shielded.

3) d-block elements show irregular and erratic chemical properties among themselves.

4) La and Lu have partially filled d orbitals and no other partially filled orbitals.

$^{\circ}_{M^{2+}/M}$ values with negative
-

sign for the four successive elements Cr, Mn, Fe and Co is

1) Mn > Cr > Fe > Co 2) Cr > Fe > Mn > Co

3) Fe > Mn > Cr > Co

4) Cr > Mn > Fe > Co

- 51. The outer electronic configuration of Lu (Atomic No : 71) is :
 - 1) $4f^3 5d^5 6s^2$ 2) $4f^8 5d^0 6s^2$

3) $4f^4 5d^4 6s^2$ 4) $4f^{14} 5d^1 6s^2$

	LEVEL-2 KEY								
	•	•						0	10
1	2	3	4	5	6	7	8	9	10
1	2	4	3	4	3	3	4	1	2
11	12	13	14	15	16	17	18	19	20
1	2	1	4	4	3	1	2	3	1
21	22	23	24	25	26	27	28	29	30
2	1	2	3	4	3	2	3	2	4
31	32	33	34	35	36	37	38	39	40
1	1	4	1	3	1	1	3	4	1
41	42	43	44	45	46	47	48	49	50
3	1	2	3	2	1	4	1	2	1
51									
4									

NE	ET				d & f Block Elements
	EVEL-3(PREVIOUS YEARQU		6.	Lanthanides are :	[AIPMT 04]
1.	Which of the following staten			1) 14 elements in the	sixth period (At. No. 90 to
	correct? [AII	PMT 01]		103) that are filling 4f	f sublevel.
	1) La(OH)3 is less basic than Li(OH)3.		2) 14 elements in the	seventh period (At. No. 90
	2) In lanthaniode series, ionic radius	s of Ln^{3+} ion		to 103) that are filling	g 5f subshell.
	decreases.			3) 14 elements in the	sixth period (At. No. 58 to
	3) La is actually an element of tra	nsition series		71) that are filling the	4f subshell.
	rather than lanthaniodes.			4) 14 elements in the	seventh period (At. No. 58
	4) Atomic radius of Zn and Hf are s	same because		to 71) that are filling t	the 4f subshell.
	of lanthaniode contraction.		7.	The correct order	r of decreasing second
2.	The transition metals are mostly [AIPMT 01]		ionization enthalpy	of Ti (22), V (23), Cr (24)
	1) diamagnetic			and Mn (25) is :	[AIPMT 05]
	2) paramagnetic			1) $Cr > Mn > V > Ti$	
	3) neither diamagnetic nor paramagn	netic		2) V > Mn > Cr > Ti	
	4) both diamagnetic and paramagne	tic		3) Mn > Cr > Ti > V	
3.	General electronic configuration of	f lanthanides		4) Ti > V > Cr > M	
	is: [A]	IPMT 02]	8.	Four successive me	embers of the first row
	1) (n–2) f^{1-14} (n – 1)s ² p ⁶ d ^{0–1} ns ²	1		transition elements a	are listed below with their
	2) (n-2) $f^{10-14} (n-1)d^{0-1} ns^2$			atomic numbers.	Which one of them is
	3) (n-2) f^{0-14} (n - 1) d^{10} ns ²			expected to have th	e highest third ionization
	4) (n-2) d^{0-1} (n - 1) f^{1-14} ns ²	I TOTAL		enthalpy?	[AIPMT 05]
1		v^{3+} t^{3+}		1) Vanadium ($Z = 23$)) 2) Manganese (Z = 25)
4.	The correct order of ionic radii of			3) Chromium ($Z = 24$	4) 4) Iron ($Z = 26$)
	-	PMT 03]	9.	The aqueous solution	n containing which one of
	1) $Y^{3+} < Lu^{3+} < Eu^{3+} < La^{3+}$			the following ions w	ill be colourless?
	2) Lu ³⁺ < Y ³⁺ < Eu ³⁺ < La ³⁺ 3) Lu ³⁺ < Eu ³⁺ < La ³⁺ < Y ³⁺				[AIPMT 05]
	3) $Lu^{3+} < Eu^{3+} < La^{3+} < Y^{3+}$ 4) $La^{3+} < Eu^{3+} < Lu^{3+} < Y^{3+}$			(At. No. Sc = 21, Fe	= 26, Ti = 22, Mn = 25)
5.	/	e basic character of the transition metal noxide follows the order: [AIPMT 03]		1) Fe^{2+} 2) Mn^{2+}	3) Ti ³⁺ 4) Sc ³⁺
	monoxide follows the order: [AII			In which of the fol	lowing pairs are both the
	(At. no. : Ti = 22, V = 23, Cr = 24, Fe = 26)			ions coloured in aque	eous solution? [AIPMT 06]
	1) VO > CrO > TiO > FeO			(At. No. Sc= 21, Ti =	= 22, Ni = 28, Cu = 29, Co
	2) CrO > VO > FeO > TiO			= 27)	
	3) TiO > FeO > VO > CrO			1) Sc^{3+} , Co^{2+}	2) Ni ²⁺ , Cu ⁺
	4) TiO > VO > CrO > FeO			3) Ni ²⁺ , Ti ³⁺	4) Sc ³⁺ , Ti ³⁺

11. Identify the incorrect statement among the	16. The d-electron configurations of Cr^{2+} , Mn^{2+} ,
following. [AIPMT 2007]	Fe ²⁺ and Co ²⁺ are d ⁴ , d ⁵ , d ⁶ and d ⁷
1) Shielding power of 4f electrons is quite weak	respectively. Which one of the following will
2) There is a decrease in the radii of the atoms or	exhibit minimum paramagnetic behaviour ?
ions as one proceeds from La to Lu	(At, nos. Cr = 24, Mn = 25, Fe = 26, Co = 27)
3) Lanthanoid contraction is the accumulation of	1)[Mn(H ₂ O) ₆] ²⁺ [AIPMT 2011]
successive shrinkages.	$2)[Fe(H_2O)_6]^{2+}$
4) As a result of lanthanoid contraction, the	
properties of 4d series of the transition elements	3) $[Co(H_2O)_6]^{2+}$
have no similarities with the 5d series of	4) $[Cr(H_2O)_6]^{2+}$
elements.	17. Which one of the following does not correctly
12. Which of the following ions will exhibit colour	represent the correct order of the property
in aqueous solutions? [AIPMT 2010]	indicated against it? [AIPMT 2012]
1) $La^{3+}(Z = 57)$	1) Ti < V < Cr < Mn : increasing number of
2) $Ti^{3+}(Z = 22)$	oxidation states
3) $Lu^{3+}(Z = 71)$ 4) $Sc^{3+}(Z = 21)$	2) $Ti^{3+} < V^{3+} < Cr^{3+} < Mn^{3+}$: increasing
13. Which of the following ions has electronic	magnetic moment
configuration [Ar]3d ⁶ ? [AIPMT 2010]	3) Ti < V < Cr < Mn : increasing melting
1) Ni ³⁺	points
2) Mn ³⁺	4) Ti < V < Mn < Cr : increasing 2 nd ionization
3) Fe^{3+} 4) Co^{3+} E-TECH	enthalpy
14. Which of the following pairs has the same size?	18. Four successive members of the first series of
1) Fe ²⁺ , Ni ²⁺ [AIPMT 2010]	the transition metals are listed below. For
2) Zr^{4+},Ti^{4+}	which one of them the standard potential
	$\left(E^{0}_{M^{2^{+}}/M}\right)$ value has a positive sign ?
3) Zr^{4+} , Hf^{4+} 4) Zn^{4+} , Hf^{4+}	[AIPMT 2012]
15. For the four successive transion elements (Cr,	1) Co (Z = 27) 2) Ni (Z = 28)
Mn, Fe and Co), the stability of +2 oxidation	3) Cu (Z = 29)
state will be there in which of the following	19. The catalytic activity of transition metals and
order? [AIPMT 2011]	their compounds is ascribed mainly to :
(At. nos. $Cr = 24$, $Mn = 25$, $Fe = 26$, $Co = 27$)	1) their magnetic behaviour [AIPMT 2012]
1) $Mn > Fe > Cr > Co$	2) their unfilled d-orbitals
2) Fe > Mn > Co > Cr 3) Co > Mn > Fe > Cr 4) Cr > Mn > Co > Fe	3) their ability to adopt variable oxidation state
$J_{1} \subset U \neq I \\ V I I \neq I \\ C I \neq I \\ C I \neq I \\ V I I \neq C U \neq F \\ C I \neq I \\ V I I \neq C U \neq F \\ C I \neq I \\ C I \neq I \\ V I I \neq C U \neq F \\ C I \neq I \\ C I = I \\ C $	4) their chemical reactivity
49 E- TECH ACADEMY	KURLA, MUMBAI, MAHARASHTRA -70 Ph: 9833905914

NEET

NEET	d & f Block Elements
20. Which of the following exhibit only + 3	26. Which one of the following statements related
oxidation state? [AIPMT 2012]	to lanthanons is incorrect? [NEET-2016]
1) U 2) Th 3) Ac 4) Pa	1) Ce (+4) solutions are widely used as oxidizing
21. Which of the following lanthanoid ions is	agent in volumetric analysis.
diamagnetic? [AIPMT 2013]	2) Europium shows +2 oxidation state.
(At nos. Ce = 58, Sm = 62, Eu = 63, Yb = 70)	3) The basicity decreases as the ionic radius
1) Sm ²⁺ 2) Eu ²⁺ 3) Yb ²⁺ 4) Ce ²⁺	decreases from Pr to Lu
22. Which of the following statements about the	4) All the lanthanous are much more reactive
interstitial compounds is incorrect?	than aluminium
1) They are chemically reactive. [AIPMT 2013]	27. The reason for greater range of oxidation states
2) They are much harder than the pure metal.	in actinoids is attributed to : [NEET -2017]
3) They have higher melting points than the pure	1) The radioactive nature of actinoids
metal.	2) Actinoid contraction
4) They retain metallic conductivity.	3) 5f, 6d and 7s levels having comparable
23. Magnetic moment 2.83 BM is given by which	
of the following ions? [AIPMT 2014]	4) 4f and 5d levels being close in energies
(At.nos.Ti=22, Cr=24, Mn=25, Ni=28)	28. Name the gas that can readily decolourise
1) Ti ³⁺ 2)Ni ²⁺ 3) Cr ³⁺ 4) Mn ²⁺	acidified KMnO ₄ solution: [NEET 2017]
24. Which of the following processes does not	1) CO_2 2) SO_2 3) NO_2 4) P_2O_5
involve oxidation of iron? [AIPMT-1 2015]	29. Match the might ions given in Column I with
1) Decolourization of blue CuSO ₄ solution by	the spin magnetic moments of the ions given in
iron	Column II and assign the correct code :
2) Formation of Fe (CO)5 from Fe	Column I Column II[NEET 2018]
3) Liberation of H_2 from steam by iron at high	(a) Co^{3+} (i) $\sqrt{8}$ B.M.
temperature	(b) Cr^{3+} (ii) $\sqrt{35}$ B.M.
4) Rusting of iron sheets	(c) Fe^{3+} (iii) $\sqrt{3}$ B.M.
25. Gadolinium belongs to 4f series. It's atomic	(d) Ni^{2+} (iv) $\sqrt{24}$ B.M.
number is 64. Which of the following is the	(v) $\sqrt{15}$ B.M.
correct electronic configuration of gadolinium?	a b c d
1) [Xe] 4f ⁸ 6d ² [AIPMT-2 2015]	1) iv v ii i
2) $[Xe]4f^{9}5s^{1}$	2) iii v I ii
3) [Xe] $4f^{7}5d^{1}6s^{2}$	3) iv I ii iii
3) $[Xe] 4f^{6}5d^{2}6s^{2}$	4) I ii iii iv
4) [Xe] $4f^{0}5d^{2}6s^{2}$	

NEET	d & f Block Elements
30. The manganate and permanganate ions are	35. Zr (Z =40) and Hf (Z =72) have similar atomic
tetrahedral, due to: [NEET-1- 2019]	and ionic radii because of : [NEET- 2021]
1) The π -bonding involves overlap of d-orbitals	1) belonging to same group
of oxygen with d-orbitals of manganese.	2) diagonal relationship
2) The π -bonding involves overlap of p-orbitals	3) lanthanoid contraction
of oxygen with d-orbitals of manganese.	4) having similar chemical properties
3) There is no π -bonding.	36. Gadolinium has a low value of third ionisation
4) The π -bonding involves overlap of p-orbitals	enthalpy because of [NEET- 2022]
of oxygen with p-orbitals of manganese.	1) small size
31. The number of hydrogen bonded water	2) high exchange enthalpy
molecule(s) associated with $CuSO_4$. $5H_2O$ is –	3) high electronegativity
1) 3 2) 1 3) 2 4) 5 [NEET- 2019]	4) high basic character
32. When neutral or faintly alkaline KMnO4 is	37. In the neutral or faintly alkaline medium,
treated with potassium iodide, iodide ion is	KMnO ₄ oxidises iodide into iodate. The change
converted into 'X', 'X' is - [NEET-2- 2019]	in oxidation state of manganese in this reaction
1) I_2 2) IO_4^- 3) IO_3^- 4) IO^-	is from [NEET- 2022]
33. The calculated spin only magnetic moment of	1) +7 to +4 2) +6 to +4
Cr ² + ion is : [NEET - 2020]	3) +7 to +3 4) +6 to +5
1) 3.87 BM 2) 4.90 BM	-38. The stability of Cu ²⁺ is more than Cu ⁺ salts in
3) 5.92 BM 4) 2.84 BM	aqueous solution due to – [NEET- 2023]
34. Identify the incorrect statement.[NEET- 2020]	1) enthalpy of atomization.
1) Cr^{2+} (d ⁴) is a stronger reducing agent than	2) hydration energy.
$Fe^{2+}(d^6)$ in water.	3) second ionisation enthalpy.
2) The transition metals and their compounds are	4) first ionisation enthalpy.
known for their catalytic activity due to their	LEVEL-3 KEY
ability to adopt multiple oxidation states and to	1 2 3 4 5 6 7 8 9 10
form complexes.	1 2 1 1 4 3 1 2 4 3
3) Interstitial compounds are those that are	<u>11 12 13 14 15 16 17 18 19 20</u>
formed when small atoms like H, C or N are	4 2 4 3 1 3 3 3 3 21 22 23 24 25 24 25 20 20 20
trapped inside the crystal lattices of metals.	21 22 23 24 25 26 27 28 29 30 2 1 2 2 2 2 2 2 1 2
4) The oxidation states of chromium in $C_r O_4^2$ and	3 1 2 2 3 3 3 2 1 2 21 22 23 3 3 2 1 2
$C_r O_7^{2-}$ are not the same.	31 32 33 34 35 36 37 38 39 40 2 3 2 4 3 2 1 2

E-TECH ACADEMY Study Center

FREE WIFI

DOUBT SUPPORT

SEPARATE DESK

Add:- White House,Batatawala Building,Buddha Colony, Kurla West, Mumbai 400070. MOB:. 9833905914 / 8928877808